LETTER FROM THE EDITOR

This is the first issue of the MAGAZINE with the MAA’s new publishing partner Taylor
& Francis. We look forward to working with Taylor & Francis to bring expository
mathematics to you in print or electronically. This issue begins with Robert Thomas’
appreciation of Theodosius of Bithynia’s first book of spherics. Thomas’ appreciation
goes beyond historical evidence to reconstruct an ideal version of the book.

In the next article, Frederic Mynard reviews the classical example of stereographic
projection to explain that the sphere can be viewed as the plane minus one point. This
example of a one-point compactification motivates his observation that the pinched
sphere is the one-point compactification of the punctured plane. Without using homo-
topy theory, he distinguishes topologically the plane from the punctured plane.

Each issue of the MAGAZINE in 2017 included a Pinemi puzzle by Lai Van Duc
Thinh. In this issue, he provides the first Partiti puzzle; each issue of 2018 will include
a Partiti puzzle. Andrés Caicedo and Brittany Shelton introduce the puzzle and provide
some comments about partitions.

Many know that Benjamin Franklin created magic squares. But he failed to describe
his method of construction. Ronald P. Nordgren analyzes one method and discusses
others based on Euler’s composition method.

The inspiration for an article can come from disparate sources. In “The Metric met-
ric on Sy4,” Bret Jordan Benesh was inspired by a music video by the band Metric. He
uses a concept from geometric group theory to define the Metric metric. For their arti-
cle on determining all solutions to a functional equation, Mihdly Bessenyei and Gréta
Szabé were inspired by a problem from a contest problem book. Bessenyei and Szab6
build up all solutions by first considering differentiable solutions and eventually use
homomorphisms on groupoids to solve the problem.

In the next article, Shahnawaz Ahmed and Elias G. Saleeby provide an alternative
proof for a formula for the volumes of generalized super-ellipsoids that was obtained by
Dirichlet. They also use a geometric Monte Carlo method to estimate hyper-volumes,
as well as consider volumes of revolution in higher dimensions.

In his article “Designing for minimum elongation,” Niels Christian Overgaard re-
visits the calculus of variations problem of finding the shape of a vertically hanging
rope so as to minimize the elongation of the rope due to the rope’s own weight and the
load of any object attached to the rope. He recalls an earlier solution, which he shows
to be optimal, and gives three new complete solutions to the problem.

In their article, Arthur Befumo and Jonathan Lenchner begin by recalling Solomon
Golomb’s tromino theorem that proves that 2" x 2" chess board can be covered by an
L-shaped tromino. They extend Golomb’s result to higher dimensions and consider
covering chess boards with the straight tromino.

In between the articles are three proofs without words by Andrzej Piotrowski, Angel
Plaza, and Brian Hopkins. The issue concludes with the Problems and Reviews.

Finally, a warm farewell to Julie Beier. She no longer has the time to serve on the
editorial board now that she has left academia. I will miss her sound advice. Good luck
Julie!

Michael A. Jones, Editor
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The first three books of Euclid’s Elements provide the charming classical introduction
to deductive mathematics with the geometry of the blackboard. A blackboard with
straightedge and a pair of compasses is old-fashioned, but the mathematics is also
old-fashioned and none the worse for that, unlike two-thousand-year-old physics or
chemistry. This paper introduces the equally old but less known geometry of the
spherical blackboard and compasses.'

What can be done with compasses on a spherical blackboard? A surprising lot that
this introduction will not discuss. The analog on the sphere of a straight line in the
plane is a great circle, and to draw a great circle on the sphere you need the right
setting for the compasses (Propositions 16 and 17), and that depends on the size of the
sphere, surprisingly determinable (Proposition 19). With great circles playing the role
of lines, you can set about moving the Elements to the sphere.

Introduction

The extant treatise on spherics, by Theodosios of Bithynia® (l. 100 BCE £100), is a
work in three books as Euclid’s Elements is a work in 13 books. As in the Elements
the beginning is of special interest. I shall have almost nothing to say about the two
more advanced books except that they depend on the first and are important in Euclid’s
astronomy book Phenomena [3]. If an ideal version of a classical work deteriorates over
time because of handwritten transmission, then we could think of the “first book™ in
its present version® of the text as being an inferior copy of the original—not too unlike
photocopies, of photocopies, of photocopies, ... of an original. At some time between
the temporally first book on the subject and the present text (itself copied for several
hundred years), there may have been a version with all of the virtues possible, a “book”
in somewhat the sense of Erdés.*
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This paper attempts to reconstruct that better version because it will be easier to
appreciate than the present text, which has had some bad press. In particular, Thomas
Heath [5] says that the work as a whole is applied and not interesting. How much of
this reconstruction is historical may be a difficult historical question, but I intend to
suggest how good the book might have been by showing what is still there if one looks
for it carefully. I am not making anything up except the obvious final Corollary 5.

Consideration of this book is a worthwhile exercise for a couple of reasons. It is
simple enough to be studied in high school except that is uses three-dimensional ge-
ometry. While deductive, it is apparently preaxiomatic, since there are no postulates
either in the text or referred to. The game was afoot, but we do not know what the rules
were. So it is a window on Greek geometry before the axiomatization accomplished
by Euclid. What it uses are obvious facts about circles, things one can do with circles,
and simple three-dimensional geometry never involving spheres to show results about
circles on spheres. There seems to be no restriction on the geometrical knowledge that
can be called upon except that no knowledge about the topic of the book is assumed.
This is a straightforward methodological principle to which I need to draw attention.
One naturally thinks of Euclidean theorems as encapsulating results used, but specific
reference to Euclidean theorems is anachronistic since the (original) book was almost
certainly written before the Elements. The present text is later than the Elements.

Since this is not a work of history, I am going to avoid historical questions. This
exploration may be useful to historians in considering spherics, since their proper ad-
herence to the degenerate textual evidence is not conducive to exploring possibilities.
To have possibilities set out may encourage a reevaluation of the work. That will be
properly historical work. My reconstruction is partly based on the work of Sidoli and
Saito [7], which penetrates into what the work is trying to accomplish, not obvious in
the text. They draw attention to the apparent practical goal of the book and how that
differs from the way the book begins. (See also [9].)

It is not difficult to set out in general terms what the book accomplishes. It begins
with the result that a plane through three points on a sphere cuts it in a circle. And it
ends by showing how, with a pair of compasses that can transfer distances (unlike the
collapsing compasses one can limit oneself to in Euclid’s first book)—and a straight-
edge when working in the plane—it is possible to draw that circle on the surface of the
sphere. This is perhaps not much, but it is not trivial and it gives the book unity and an
appeal especially to the ancient Greeks. Along the way it shows how to determine the
diameter of a sphere, a construction that is required in the final constructions (of each
Platonic solid inscribed in a sphere) in book thirteen of the Elements and not something
one can easily think how to do with straightedge and compasses. The document, if not
a gem (polyhedral), is at least a pearl (spherical).

I shall set out the 21 propositions of the book, giving some indication of most proofs
and simplifying some. The novelties that I am introducing are limited to interpretation
and Corollaries 3-5 of the results that are in the version of Theodosios. My suggestion
is that these few additions may have been in some former version of the book; even if
they were not, they make it sounder and more interesting without deviant novelty.

The sections of the paper discuss definitions, relations among the defined terms
(part 1), planes and the sphere, relations (part 2), great circles, the configuration of
central importance consisting of a great circle perpendicularly bisecting another circle,
the polar radius of a great circle, and then the final construction of the diameter of the
sphere, great circles, and the pole of a given circle.



VOL. 91, NO. 1, FEBRUARY 2018 5

Definitions

The book begins with five definitions, of which I give literal translations.’

Definition 1. A sphere is a solid figure contained by a single surface, all lines to which,
falling from a single point that lies within the figure, are equal to one another.

Definition 2. Center of the sphere is the point.

Definition 3. Axis of the sphere is a line passing through the center and bounded
in each direction by the surface of the sphere, around which fixed line the sphere
rotates.®

Definition 4. The poles of the sphere are endpoints of the axis.

Definition 5. Pole of a circle in a sphere names a point on the surface of the sphere all
lines from which, falling on the circumference of the circle, are equal to one another.

In this context, a circle is a circular disk not just its circumference, and a circle’s
being in a sphere means not just being in it somewhere but having its circumference on
the surface of the sphere. Accordingly, when one is said to draw a circle that means to
draw its circumference on the surface of the sphere. Doing that requires the pole of the
circle and compasses set to a distance for which Greek has no term. I shall refer to the
straight-line radius for the compasses as the polar radius of the circle.

A necessary and sufficient condition that functions as a definition for a line to be
perpendicular to a plane is that it is perpendicular to every line in the plane through its
point of intersection with the plane.

Spheres and circles have centers, and a circle (on the sphere understood) has two
poles because the point antipodal to the pole one would use to draw it is also equidistant
from all of its points. Sorting out the relations among these four points for a circle is
the subject of the next section and Relations among centers and poles (part 2).

The two initial propositions

My interpretation of the work as a whole is that it accomplishes just before its end its
practical goal of being able to draw a great circle through any two points on the sphere
(or likewise to extend a great-circle fragment to the whole circle). And also at its end its
satisfying theoretical goal of being able to draw the circle through three points on the
sphere, the circle that Proposition 1 assures us is the intersection of the sphere with the
plane through the three points. That a plane is determined by three noncollinear points
or two intersecting lines is Elements X1.2. This is an example of the sort of outside
information called upon and usually not stated.

Proposition 1. The plane through three points A, B, and C on the surface of a sphere
cuts the surface of the sphere in the circumference of a circle.

Proof. The perpendicular from the center of the sphere to the plane is a common side
of right triangles, each with a radius of the sphere as hypotenuse. Since these two sides
of the right triangles are equal, the third sides are all equal, and they are the equal radii
of what must therefore lie on a circle with the foot of the perpendicular as its center.
Easier still if the plane passes through the center of the sphere. ]

5 A full literal translation of a critical edition of Book one into English is available on request. An English trans-
lation of a Latin translation from Greek is [8]; French translations are [11] and in [4].

6 This and the next definition are of significance for the astronomical relevance of the more advanced books, but
play no part in the work itself.
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Corollary 1. If a circle is in a sphere, the perpendicular from the center of the sphere
to it falls at its center.

The text makes the next proposition a problem, that is, a construction, but it is no
more a construction to find the center of the sphere than Proposition 1 is a construction
to find the center of the circle. There is a historical problem here, but for learning
purposes this proposition is better considered a theorem, leaving constructions with
compasses (and straightedge in the plane) to the final four propositions.

Proposition 2. 7o find the center of a given sphere.

Proof. The construction is to erect the perpendicular at the center of a circle produced
by cutting the sphere with a plane, produce it both ways to become a diameter, and
bisect it. Proof by contradiction. |

Corollary 2. If a circle is in a sphere and a perpendicular to its plane is erected at its
center, the center of the sphere is on the perpendicular.

What look like constructions in the proofs of Propositions 1 and 2, since there are
no instruments to perform them, are better thought of as thought experiments, in which
one can readily drop a perpendicular from the center of the sphere to the intersecting
plane (in 1) and erect the perpendicular at the center of the circle (in 2) and bisect it
when it is extended to be a diameter. While there is no way to do these things, one
has no doubt that there is, internal to the sphere, a line perpendicular to the plane and
through the center of the circle or sphere and that it has a mid-point. If the powers drawn
on here were real instead of experimental thoughts, one could accomplish the goals of
the work without doing much. For instance, one could simply measure the length of
the diameter in Proposition 2 rather than go to the trouble of figuring out how long it
is with a real construction in Proposition 19. The aims would become trivial. Drawing
attention to this distinction between notional constructions and real constructions is the
great contribution of Sidoli and Saito [7] to the understanding of this work. While one
sort of construction is used to get the book going and in subsequent proofs, the aim of
the book is constructions of an altogether different and more restricted kind.

Planes and the sphere

It is anachronistic to state results in terms of specifics, e.g., “circle ABC,” rather than
the generality of the Euclidean style, “a circle.” The general prose enunciations in the
Spherics are hard to understand and not always complete or accurate. My excuses are
clarity and also that we do not know that pre-Euclidean geometry was written Euclid’s
way.

The diagrams are my constructions to help with visualization. The manuscript dia-
grams (sometimes missing altogether) are not easy to decipher; studying them would
be a work in itself. No plane diagram of a spatial configuration is entirely easy to read;
these are relatively accurate representations made with Mathematica.

This section and the next, except for Proposition 6, can be omitted on first (or any)
reading, and the proof sketches should probably be omitted by anyone not interested
in the book for its own sake. Propositions 3—5 deal with planes that are tangent to the
sphere rather than cutting it. One does need to know about great circles (Propositions
6,11, and 12).

Proposition 3. A sphere touches a plane in only one point.

Proof. Proof by contradiction. ]
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Figure 1 Diagram for Propositions 7 to 10. E is the center of circle ABC, G is the center
of the sphere, and D and Z are the poles of the circle on the surface of the sphere.

Proposition 4. Let a plane T1 touch (but not cut) a sphere with center B at a point A.
Then the line joining the point of contact A to the center B is perpendicular to T1.

Proof. Each plane containing the line AB cuts the sphere in a great circle and cuts the
plane IT in a straight line perpendicular to radius AB. Accordingly AB is perpendicular
to IT. ]

Proposition 5. If a sphere touches a plane that does not cut it, then the center of the
sphere is on a perpendicular erected into the sphere at the point of contact.

Proof. Proof by contradiction using Proposition 4. ]
The next theorem is about planes too, for all circles in the sphere have planes.

Proposition 6. Circles through the center of a sphere are great circles.” Other circles
in a sphere are equal to each other if equidistant from the center of the sphere, and the
farther away from the center the smaller the circles.

Proof. Consideration of right-angled triangles with the radius of the sphere as hy-
potenuse and the perpendicular to the center of the circle as one side and the radius
of the circle as the other side shows how, since the length of the hypotenuse is fixed,
the other sides are related. n

Relations among centers and poles (part 2)

Propositions 7-10 make statements about the configuration shown in Figure 1, which
shows the center of the sphere (there G) collinear with the center of the circle ABC
(there E) and the pole (there D); if DEG is extended, then it reaches the surface again
at the other pole of the circle, Z.

Proposition 7. If a circle T is in a sphere X, a straight line through the center of
and the center of T is perpendicular to T'.

7 The Greek word is just “greatest,” which is descriptive (largest possible). Since English has a technical term,
use it. Circles not great are, in this sense, small.
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Proof. Consideration of what turn out to be congruent triangles (Figure 1) with GE
joining the centers as common side, GA or GB as second side and circle radius EA or
EB as the other side show that the angles at E are all equal and so are right angles. W

Proposition 8. If a perpendicular is dropped from the center of a sphere to a circle in
the sphere and extended in both directions, it meets the sphere at the poles of the circle.

Proof. From the center of the sphere G let a perpendicular be dropped to the circle at
E (Figure 1), its center, and the points at which the perpendicular extended meets the
sphere be D and Z. Consideration of right-angled triangles DAE and DBE, for any two
points A and B on the circle, with radii EA and EB equal and side ED common, shows
that sides AD and BD are equal and so are polar radii of the circle. So D is a pole of the
circle. Similarly Z is a pole of the circle. |

Proposition 9. If a perpendicular is dropped to a circle in a sphere from one of its
poles D, it falls on the center of the circle, and extended it meets the sphere at the other
pole of the circle Z.

Proof. Let the foot of the perpendicular to the circle be E (Figure 1). Consideration of
right-angled triangles DAE and DBE, for any two points A and B on the circle, with
polar radii AD and BD equal and side ED common, shows that sides EA and EB are
equal and so are radii of the circle. The foot of the perpendicular E is the center of the
circle. Then consideration of right-angled triangles EAZ and EBZ, with the (common)
portion of the diameter of the sphere EZ as one side and the radii of the circle EA
and EB as the other side, shows that the hypotenuses AZ and BZ are equal and so are
also polar radii of the circle. The opposite end Z of the diameter is also a pole of the
circle. ]

Proposition 10. If a circle is in a sphere, the line joining its poles D and Z is perpen-
dicular to the circle and passes through the centers of the circle and of the sphere.

Proof. Without loss of generality if the circle is small, let D be closer to the circle than
Z (Figure 1), and let the line DZ pass through the plane of the circle at E. Consideration
of triangles DAZ and DBZ, for any two points A and B on the circle, with polar radii
DA and DB equal and polar radii AZ and BZ equal and side DZ common shows that
the angles ADZ and BDZ are equal. Consideration of triangles with polar radii DA and
DB equal, side DE common, and the equal angles at D between them shows that they
are congruent. The special case of B opposite to A shows that the equal angles BED
and AED are right. DE is perpendicular to the circle. Accordingly, E is the center of
the circle by Proposition 9. DZ is perpendicular to the circle and so passes through the
center of the sphere G by Corollary 2. |

Great circles

Proposition 11. In a sphere, two great circles bisect each other.

Proof. If the center of the sphere is joined to the points at which the circumferences of
the circles intersect, the resulting lines lie in the plane of each circle, therefore in the
intersection of their planes, and so are a single straight line, which is a diameter of the
sphere and of both circles, which therefore bisect each other. |

Proposition 12. In a sphere, circles that bisect each other are great circles.
(Converse of 11)

Proof. Perpendiculars erected at the centers of the bisecting circles contain the center
of the sphere, but they intersect at the center of the circles, which is common. Their
center is the center of the sphere. ]
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Figure 2 Diagram for Propositions 13 to 15. P and Q are the poles of circle ABC.

The three middle theorems on the key configuration

The cycle of Theorems 13—15 concerns the same configuration in a sphere, a small
circle ABC and a great circle PAQC through its poles P and Q (Figure 2). They show
that three conditions are equivalent, as we would say, by showing that each implies the
other two:

1. the great circle bisects ABC with line AC,
2. the great circle cuts ABC perpendicularly, and
3. the great circle passes through the poles of ABC.

The propositions say what knowledge gives what knowledge. 13: (2) implies (1) and
(3). 14 : (1) implies (2) and so (3). 15: (3) implies (2) and so (1).

Note that when circle ABC is great, condition (1) is automatic and so cannot imply
(2) or (3), but (2) and (3) are equivalent by Proposition 10.

Proposition 13. If a great circle is perpendicular to small circle ABC, then the great
circle bisects ABC and passes through its poles.

Proof. For a small circle ABC, because the line PQ joining its poles runs perpendic-
ularly through its center and the center of the sphere in the plane of PAQC, AC is a
diameter of ABC. u

Proposition 14. If a great circle bisects small circle ABC, then it passes through the
poles of ABC and is perpendicular to it.

Proof. The line joining the center of the sphere and of PAQC to the mid-point of diam-
eter AC of circle ABC is perpendicular to ABC by Proposition 7. Because it is also in
PAQC, containing both the center of the sphere and of AC, PAQC is perpendicular to
ABC. Passing through the poles is a consequence of the perpendicularity by Proposition
13. |

Proposition 15. If a great circle passes through the poles of ABC, then it bisects ABC
perpendicularly.

Proof. The line PQ between the poles of ABC is perpendicular to ABC, and so PAQC
must be perpendicular, and therefore bisects ABC by Proposition 13. ]
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The polar radii of great circles

One can see in Figure 2 that there is room for a second great circle perpendicular to
PAQC bisecting circle ABC perpendicularly. Such great circles bisect each other by
Proposition 11. If circle ABC is also great, then a symmetric configuration is created
in which each circle contains the poles of both the others. Joining poles to adjacent
poles produces an octahedron (Figure 3). This configuration motivates and illustrates
Propositions 16 and 17. It also motivates the final stage of Euclid’s Elements in Book
13. The octahedron is the easiest of the Platonic solids to inscribe in a given sphere.
Euclid does not draw them inside a sphere but, on the basis of the extracted diameter
of the sphere, constructs the solid to be the right size so that the equal distances of all
its vertices from its center is the radius of the given sphere. An equal sphere would fit
around it perfectly.

Figure 3 Octahedron inscribed in the sphere with, as edges, 8 polar radii of great circle
ABCD from P and Q and a square inscribed in circle ABCD with sides equal to the polar
radius.

To draw a great circle, it is necessary to know its polar radius. These theorems give
a necessary and sufficient condition for a circle to be great in terms of its polar radius.

Proposition 16. The polar radius of a great circle ABCD in a sphere is equal to the
side of the square inscribed in the (or any) great circle.

Proof. Let AC and BD be perpendicular diameters of circle ABCD meeting at £ and
let A be joined to pole P of ABCD and to B. Then AB is a side of a square inscribed
in a great circle. Right triangles AEP and AEB are congruent, and so AP equals AB as
required. ]

Proposition 17. If the polar radius of a circle ABC in a sphere is equal to the side of
a square inscribed in a great circle, then ABC is a great circle.
(Converse of 16)

Proof. Great circle PAQC (Figure 2) has polar radii PA and PC (Figure 3) equal to the
side of square PAQC inscribed in a great circle. Since AC is a diameter of great circle
PAQC and so also of circle ABC, circle ABC must therefore be a great circle. ]

Final problems for straightedge and compasses

These four problems complete the work in four steps:
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A

a b

(a) (b)

Figure 4 Proposition 18. (a) A, B, and C on the circle. (b) Triangle abc congruent to
triangle ABC with perpendiculars at » and ¢ meeting at d.

* Finding the diameter of a circle in the sphere, given the circle or (we can see) three
points on it (not in the text).

* Finding the diameter of the sphere from the outside.

* Finding the polar radius of great circles, which allows drawing a great circle through
any two points.

* Finding the pole of a given circle, which is necessary in later books. We can see,
though (not in the text), that three points on the circle suffice, meaning that the pole
can be found without the circle, which allows the circle through three points to be
drawn.

The first of the problems involves the insight that allows the problem to be transferred
to the plane by transferring distances with compasses. As a planar problem it is subject
to the usual techniques with straightedge and compasses.

Proposition 18. Given A, B, and C, points on the circumference of a circle in a sphere;
to construct a line equal to the diameter of circle ABC.

Proof. Let triangle abc be constructed in a plane (Figure 4(b)) so that ab is equal to
chord AB, ac is equal to chord AC, and bc is equal to chord BC (Figure 4(a)). Also, let
perpendiculars to ab and ac be drawn toward each other at b and c intersecting at d. Let
ad be joined.

Since ad subtends a right angle at b, it is the diameter of a semicircle through b.
Similarly, ad is the diameter of a semicircle through c. But having the same diameter,
these are halves of the only circle with diameter ad, the undrawn circumcircle of trian-
gle abc, which is equal to the circle ABC in the sphere. Since ad is a diameter of circle
abc, it is equal to the diameter of circle ABC. ]

Corollary 3. Given A, B, and C, points on the surface of a sphere; to construct a line
equal to the diameter of the circle through A, B, and C.

Proof. The circle ABC, which exists on account of Proposition 1, was not used in the
construction. [

Consider the two configurations, the triangle ABC in the sphere and the triangle
abc in the plane. It is obvious that the isometry that took ABC to abc can be extended
to the whole of the circumference of the circle ABC by a process that can be called
triangulation. Any point X on the circumference is the vertex of an oriented triangle
XAB (or XBC or XCA), and that triangle can be transferred isometrically to an oriented
triangle xab (etc.), where x will be the point, located by intersecting circular arcs, on
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Figure 5 Diagram for Proposition 19. P is the pole of circle ABC, and D is diametrically
opposite to A.

the undrawn circumference of the circumcircle of triangle abc. The circle does not need
to be drawn; the isometry between the points on the circumferences of the two circles
does not depend on the drawing of either circle, although a circle can help in identifying
such points, of course. If the circle ABC is not given, we do not yet know how to draw
it.

Moreover, using points already identified as points on the circumcircle of triangle
abc, the same triangulation method acting on further points, can be used for the inverse
of the original isometry. In particular, the point d can be mapped back to the point D,
diametrically opposite to A, in three different ways, using oriented triangle abd, acd,
or bed. This renders the presence of the circle ABC superfluous not only in the original
construction of ad but in the determination of D. Triangle bcd is most convenient and,
when ABC is a great circle, the only triangle one can use (AD is then degenerate as a
polar radius). So let D be determined by the inverse transformation applied to triangle
bcd. Circles with poles B and C and polar radii bd and cd cross at D.

That this author should be responsible for the clever transfer of a problem of three-
dimensional geometry inaccessibly inside a sphere to an easy problem in a plane is not
as surprising as it might be if something similar were not also done in the fifth book of
the Elements, in which problems of ratios of magnitudes are transferred to problems
having to do with the lengths of straight lines. This sort of transfer we associate with
Descartes, but his co-ordinate geometry is only the most vast and thoroughgoing such
transfer up to his time and far beyond. That of Book five of the Elements seems to be
the first important such transfer. If such transfers are not reversible, then they are of
less interest, but they can still be important (invariants, e.g., knot polynomials).

Corollary 4. Given points A, B, and C on the surface of a sphere, to construct the point
D on the circle through A, B, and C diametrically opposite to A.

Proof. The circle exists by Proposition 1. Map d back to the sphere at D using triangle
bed. |

These corollaries are not stated in the text of Theodosios, but they are both implicitly
called upon for the proof of Proposition 19. They are the only way on offer to find the
point D and the line pr below.

Proposition 19. Given a sphere, to construct a line equal to the diameter of the sphere.

Proof. Take any two points P and A on the surface of the sphere. With pole P and polar
radius PA draw small circle ABC (Figure 5). With Corollary 4, determine the point on
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the circle D diametrically opposite to A using the three points A, B, and C. The planes
containing the poles of the circle cut the sphere in great circles, one of which contains
triangle APD, bisecting the circle by Proposition 15. With Corollary 3, construct a line
pr equal to the diameter of the great circle APD using points A, P, and D. Line pr is
then equal to the diameter of the sphere. ]

It is not clear in the last book of the Elements, where a sphere is given and it is
required to inscribe each Platonic solid in it, whether Proposition 19 is needed or not.
But the diameter of the given sphere must be determined. No method is prescribed,
which argues for this method. It has been argued to the contrary that, since Euclid
defines a sphere as a solid of revolution of a semicircle, the diameter of the sphere can
be obtained from the semicircle. I reject this argument because the diameter of a sphere
so defined is no more obvious than the radius of a sphere defined as in the Spherics.
How a sphere is defined—with equivalent definitions—makes no difference to what
it looks like or how its diameter can be extracted. The question is how to play by the
rules where the rules have not been specified. In this instance, they are not specified by
Euclid either.

Proposition 20. Given two points A and B on the surface of a sphere, to draw a great
circle through A and B.

Proof. If AB is a diameter of the sphere, then there are many great circles through A and
B; we return to this case. Otherwise construct a line de in a plane equal to the diameter
of the sphere. Construct the right bisector of de at f and extend it so that fg can be cut
off equal to fe. Then eg is the side of a square inscribed in a great circle in the sphere
and by Proposition 17 is the polar radius of great circles on the surface of the sphere.
With poles A and B and polar radius equal to eg, draw great circles on the surface of
the sphere to intersect at C and D if possible. If AB is a diameter of the sphere, only
one circle will result. In that case, with any point on that single great circle as pole any
great circle drawn will pass through A and B, and the construction is complete but not
unique. If AB is not a diameter of the sphere, then a circle drawn through A with pole
C or D will pass through B and will be great because its polar radius is equal to eg. W

This construction has an easy extension and one more difficult. It is easy to draw a
great circle touching a given circle at a given point, since the great circle’s center must
be on the great circle through the given point and the pole of the given circle. This
construction is given in the second book (Proposition 14) when enough theory has
been developed to allow the more difficult construction to be proved correct, to draw
a great circle touching a given circle and through a feasible given point (Proposition
15).8

Proposition 21. Given a circle ABC in a sphere, to find a pole of the circle.

Proof. 1f ABC is a great circle, then great circles drawn with poles on it will cross at
its poles P and Q. This would be indicated by the great circle through A and B passing
through C.

If ABC is not a great circle, then find the points Z and K diametrically opposite to A
and B, respectively, in the circle. The great circles through A and Z and through B and
K will bisect ABC perpendicularly and so intersect on the surface of the sphere at the
pole P, illustrated in Figure 6, and the other pole. |

Corollary 5. Given A, B, and C, points on the surface of a sphere, to draw the circle
through the points A, B, and C.

8 An overview of the whole work in [10].
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Figure 6 Diagram for Proposition 21. A, B, and C are the given points. Z and K are
diametrically opposite to A and B. The great circles AZ and BK intersect at P, the pole of
the circle.

Proof. By Proposition 1 there is a circle through points A, B, and C. Points A, B, and
C suffice to find a pole P of the circle. With pole P and polar radius PA, the circle can
be drawn. [

The construction to draw this circle rounds out the claim at the beginning of the book
that there is a circle through the points A, B, and C. Not only does it exist in principle,
but it can be constructed. I cannot think that a mathematician could be responsible for
what we find in the text and not also take this conclusive step! While it is missing, the
book does seem to have lost its ending.
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Summary. This paper offers an understanding of the contents of the first book of spherics, whoever wrote it—
a rational reconstruction of what it may once have said that goes beyond the historical evidence, which is the
second-century BCE Spherics of Theodosios. The reconstruction is done by bringing to the fore what is glossed
over and adding the missing conclusion.
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Solution to Partiti Puzzle

17 3 10 19 3 22
269 | 3 127 | 568 | 3 [1489
8 17 9 4 2 18
17 1458 | 9 4 2 | 56e¥
9 2 16 1 12 13
36 2 | 367 1 39 | 148
17 10 4 8 18 2
458 | 19 4 8 |96/ ]| 2
15 3 5 2 5 12
267 | 3 5 2 4 |1 39
23 4 16 18 20 8
1589 4 | 178 | 369 | 578 | 26
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What is topology about?

This is a note about topology, meant to illustrate a specific technique. If you do not know
what topology is about, think of it this way: if you look at two congruent triangles in
the plane, you consider them to be the same, because one is the image of the other
under a rigid transformation. Hence, you look at objects up to rigid transformations.
In topology, you look at objects up to a much larger class of transformations, called
homeomorphisms, that is, bijections that are continuous with continuous inverse. If
you are considering objects living in Euclidean space, think of these as the kind of
deformations undergone by a piece of clay on the potter’s wheel but without tearing,
punching holes, or cutting.

Without getting into technicalities, a fopology on a set is the kind of structure needed
to make sense of limits, hence of continuity, for a continuous map is nothing but a
limit-preserving map. Looking at things up to homeomorphisms means identifying a
lot of seemingly different things. A well-known joke is that a topologist is someone
who does not see the difference between a coffee cup and a donut. This is because
the corresponding external surfaces are indeed topologically equivalent, that is, home-
omorphic. Topology seeks to identify differences that are more profound than mere
measurements, hence topology does not care to see the difference between a coffee
cup and a donut. To distinguish two objects topologically, topologists use invariants,
that is, properties that are left unchanged by homeomorphisms. Of course, if one object
has this property and another does not, they cannot be homeomorphic. Hence, to a large
extent, topology is the study of (topological) invariants.

Unlike objects studied in analysis such as spaces of functions, surfaces such as
spheres, tori, and more generally manifolds, all have the same “local” topological struc-
ture: if you just look at a neighborhood of a given point, they all look like Euclidean
space (topologically). Hence to distinguish two surfaces of the same dimension, differ-
ences in their global topological structures need to be identified. Homotopy is a (topo-
logical) tool to that end. It looks at the kind of closed curves that can be drawn on
a surface and whether they can be deformed to a single point or not. In other words,
it seeks to see if closed curves “catch” something or not. To illustrate this, consider
Figure 1.

Think of the red curves as rubber bands placed around the surfaces. On the sphere,
it is clear that you can remove the rubber band. However, the red curve on the torus, if
it were a rubber band in that position, could not be removed without cutting either the
rubber band or the torus. Homotopy formalizes these considerations and is thus instru-
mental in identifying, among other things, the number of “holes” in the surface, which
turns out to be an invariant. Homotopy distinguishes for instance between the sphere

Math. Mag. 91 (2018) 16-19. doi:10.1080/0025570X.2017.1404797 © Mathematical Association of America
MSC: Primary 57NO5, Secondary 54B15, 54D05, 54D35
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Figure 1 Jordan curves on the sphere and the torus.

and the torus. Homotopy theory however is more sophisticated than basic point-set
topology, and what I want to discuss here is a work around to developing its machin-
ery, in a simple case.

Namely, when introducing homotopy theory, it is often (e.g., [1], [2]) noted as mo-
tivation that it is difficult to distinguish topologically by elementary means the plane
from the punctured plane, that is, the plane with one point removed. It is not hard to
convince yourself that closed curves in the plane can be deformed to a single point,
while curves on the punctured plane that “catch” the removed point cannot be. But this
intuitive argument relies on the machinery of homotopy.

Yet, one may ask for an “elementary” argument to distinguish the plane from the
punctured plane, and it seems hard to find alternatives in the literature. The idea pre-
sented here is a variant of a standard argument to distinguish the torus from the sphere—
another standard motivation to introduce homotopy. Roughly speaking (in fact, too
roughly to be really correct), an object is connected if it is “in one piece,” and if it is
not, each “piece” is a connected component. To work around homotopy, one may note
that a Jordan curve (that is, an homeomorphic copy of the circle) separates the sphere
into two connected components, while a Jordan curve on a torus may not separate it
into two connected components. Such Jordan curves appear in Figure 1 where Jordan
curves are drawn in red.

This type of argument does not work to distinguish the plane from the punctured
plane. The purpose of this note is to observe that we can nevertheless adapt it to distin-
guish these two spaces, using compactifications—a term I will explain shortly. To be
completely honest, I should point out that while the fact that a Jordan curve separates
the plane or the sphere into two connected components is intuitively clear, proofs re-
lying on elementary means are not that simple, even though not necessarily too hard,
e.g., [3]. Therefore, one may argue whether my argument is truly more ‘“elementary”
than the classical one. Nevertheless, I think this is an interesting illustration of how
compactifications can be used.

Compactness and compactifications

Compactness is a central concept of topology. In the case of objects living in Euclidean
space, compact means bounded and closed, that is, it contains the limits of sequences on
it. Hence, the sphere and torus that we considered above are compact subsets of three-
dimensional space, while the plane is not bounded, hence not compact. The general
definition is more technical, but basically ensures that many things converge, which
turns out to be the key to many existence results, by relying on the existence of certain
limit points by compactness.
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Figure 2 The stereographic projection.

A standard exercise when studying compactness it to show, for instance via stere-
ographic projection, that the real line “plus one point” is homeomorphic to the circle,
and that the plane “plus one point” is homeomorphic to the two-dimensional sphere.
A homeomorphism between the sphere and the plane “plus one point” is pictured in
Figure 2. Since the real line and the plane are not compact (they are not bounded) but
the circle and sphere are, this exercise provides concrete geometric realizations of one-
point compactifications. By a compactification Y of a topological space X, we mean
a compact space that contains (a homeomorphic copy of) X as a dense subspace (that
is, everything in Y is a limit of something in X). When Y \ X is a singleton, we say
that Y is a one-point compactification of X. The example of the sphere and the plane
“plus a point” involving a stereographic projection is often presented before showing
that every locally compact (that is, every point has a compact neighborhood, a property
enjoyed in particular by the plane and the punctured plane) topological space admits a
one-point compactification, which is unique up to homeomorphism.

Let us review this “exercise” more concretely:

The unit sphere S of R? of equation x*> + y* + z2 = 1 without its “north pole” N =
(0, 0, 1) projects onto the “equatorial plane” z = 0 in the following way. To each point
P of S\ {NV}, associate the point f(P) of intersection of the plane z = 0 with the half-
ray joining N to P, as described below and pictured in Figure 2.

The map f : S\ {N} — R? is easily seen to be a homeomorphism. Indeed, if P =
(x,y, z)belongsto S \ {NV}, then f(P) has coordinates ( 1fz, IL_Z) inR?andif M = (x, y)
in B2, then = (M) = (7%, 12e. 50 € S. Thus, R? can be identified with
the subspace S \ {V} of the compact space S that is obtained from the plane by adding
a single point corresponding to co: the north pole.

Let O denote the origin of the system of coordinates of R?, and of the equatorial
plane R? as well. Note that O is the image of the “south pole” S = (0, 0, —1) under the
stereographic projection f. Thus, if we consider the punctured plane R? \ {0} instead
of the plane in the projection, the north pole corresponds to the compactifying point at
oo while the south pole corresponds to the hole at O. In other words, f : S\ {N, S} —
R? \ {0} is a homeomorphism from the sphere without its poles onto the punctured
plane.

Thus, the one-point compactification of the punctured plane R? \ {O} is homeo-
morphic to the one-point compactification of S \ {&V, S} which is easily seen to be the
pinched sphere S* obtained as the quotient space of S under the identification of the
poles S and N, as pictured in Figure 3.

While it is intuitively clear that this realizes the desired quotient and thus the one
point-compactification of S\ {N, S} (hence of the punctured plane), one may more
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Figure 3 The pinched sphere S*.

concretely verify that p : S — S* given in spherical coordinates by

p((1,0,¢)) = (sing, 0, ¢)

restricts to a homeomorphism from S \ {¥, S} onto S* \ {0} and that p~'(0) = {S, N}.

As drawn on the rightmost picture of S* in Figure 3, a figure eight with self-
intersection at O can be drawn on S*. A single circle of this eight figure is a Jordan
curve on S* that does not disconnect S*. Thus, the plane and the punctured plane are
not homeomorphic, because their one-point compactifications are not, for one is dis-
connected by Jordan curves while the other does not need to be.
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Summary. After an informal short introduction to topology, I consider the problem of distinguishing the punc-
tured plane from the plane topologically. I propose an alternative argument to the classical use of homotopy,
relying instead on compactifications. Starting from the classical example of the stereographic projection realizing
the sphere as the one-point compactification (a term that I explain) of the plane, I observe that the pinched sphere
is the one-point compactification of the punctured plane. As the sphere is disconnected by a simple closed curve
while the pinched sphere does not need to be, this provides an intuitive argument to distinguish topologically the
plane from the punctured plane, without (explicitly) using homotopy.
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In each of the five issues for 2017, readers of this MAGAZINE found a PINEMI puzzle.
Pinemi is the creation of Vietnamese puzzle enthusiast Thinh Van Duc Lai, who has
also designed PARTITI, the puzzle that will run through this year’s issues.

Partiti

Partiti is played on a 6 x 6 grid in which each cell contains a positive integer. To play,
place one or more digits into each cell in such a way that the digits in a cell sum to
the indicated positive integer and no digit appears more than once in a cell or between
cells that are adjacent or share a corner.

The objective of the game can be described as finding unordered integer partitions of
the given numbers consisting of distinct parts from 1, 2, . . ., 9 (subject to the additional
restriction that the partitions for contiguous cells should use different parts). Such an
integer partition of n consists of an increasing sequence of positive integers that sum
to n. See Figure 1 for an example.

Figure 1 The top-right corner of this month’s puzzle. We can solve some of it by noting
that the only partition of 2 into distinct parts is 2 itself, and the only such partitions of 3
are 1 + 2 and 3, but the former is excluded, since we cannot use 2 again. Though more
information is needed to see what numbers go into the other two cells, the reader may
wantto note that22 + 18 = 1 +4 4+ 5+ 6 + 7+ 8 + 9, the sum of the remaining digits, so
all available numbers should be used between these two cells.

The puzzle for this month is at the end of this note. In what follows, we present
some basic properties of integer partitions, take a very brief detour through partitions
of infinite sets, and conclude with a few words about Partiti’s creator Thinh Lai.

Integer partitions

The study of partitions began with Euler. The number of integer partitions of n is of-
ten denoted p(n). Hardy and Ramanujan worked out an analytic formula for p(n); the
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formula takes the form of an infinite series, and even just a few terms produce remark-
ably accurate approximations. As n increases, p(n) grows faster than a polynomial, but
slower than any exponential a”, a > 1. More specifically, p(n) ~ me”m , mean-
ing that the quotient of these two expressions approaches one as n approaches infinity.
However, puzzlers need not worry, since the possible positive integers in the cells of
Partiti are quite modest, the largest potential entry in a cell being9 +8+7+ 6+ 5+
4 = 39, which could only occur in a corner surrounded by 1, 2, and 3.

More relevant than p in this context is the number of partitions of » into distinct
parts, usually denoted g(n). For example, 5 = 1 4+ 4 = 2 + 3 are all the partitions of 5
into distinct parts, and therefore g(5) = 3. By convention, ¢(0) = 1. The function g has
a somewhat more modest rate of growth than that of p, namely, g(n) ~ L_onvn/3,

433w
The sequence ¢(0), g(1), ... is sequence A0O00009 in the OEIS [3].

The first nontrivial result on this function g is Euler’s theorem from 1748 [2] giving
us that g(n) coincides with the number of partitions of n into (not necessarily distinct)
odd parts. For example, 5=1+14+3 =141+ 14141 are all such partitions of
5 and, as predicted by the theorem, there are precisely 3 of them. See Figure 2 for the
beginning of Euler’s work on integer partitions.
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Figure 2 The opening of chapter 16 of Euler’s Introductio in Analysin Infinitorum [2].
The book lays the foundations of mathematical analysis. It also introduces the theory of
integer partitions, in this chapter.

There are several proofs of Euler’s theorem. The one we proceed to sketch uses
generating functions. It relies on observing that ) -, g(n)x" can be represented as
[T72,(1 4 x™): At least formally, this product can be expanded by picking from each
factor 1 + x" one of the two summands, with the understanding that in each product, all
but finitely many times the summand 1 is the chosen one. Grouping together like terms,
the coefficient of x" in this expansion counts the number of ways the exponent n can be
formed as a sum of distinct terms, which is precisely g(n). For example, note that the
only products that result inan x* termare 1-1-1-1-x =x-1-1-x*=1-x>-%%,
where in each product we have omitted the infinitely many remaining 1s.

Now, note that [T2, (1 +x") = [122, =57 = [22, 1=k the latter equality hold-

n=1 1—x"
ing because all numerators cancel out and the only denominators that survive are the
ones with odd degree. Expanding this product reveals that it is the generating function

for partitions into odd parts:
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The argument above can be readily formalized either in terms of formal power series
expansions or in terms of ““genuine” power series (upon arguing that the series involved
converge for |x| < 1).

Many other interesting results are known for g and other partition functions, see [1]
for an introduction. These results are established by a wide variety of techniques, in-
cluding combinatorial counting arguments, Ferrers diagrams, and others, and some are
quite sophisticated, involving detailed analytical arguments, which entered the picture
thanks to the joint work of Hardy and Ramanujan at the beginning of the twentieth
century.

A small detour

The first-named author cannot help but mention that some of his own work involves the
study of partitions, in this case partitions of infinite sets. This is part of the area of set
theory called the partition calculus. As a simple example of the sort of problems one
considers here, readers familiar with the distinction between countable and uncountable
sets may enjoy verifying the following: Suppose the set R of reals is partitioned into
countably many pieces, R = [ J7~ | A,. Then at least one of the sets A, contains an
infinite increasing sequence. Note the result fails for Q in place of R (we can split Q
into countably many singletons). On the other hand, the result is not simply an artifact
of R being uncountable (which ensures that one of the A, is also uncountable), since
not every uncountable ordered set contains an infinite increasing sequence.

About Partiti’s creator

We hope readers enjoy Partiti and the many other puzzles we anticipate seeing from
Thinh. They can learn more about Thinh himself in a recent piece on his work by Will
Shortz that ran in The New York Times [4]. Thinh’s puzzle Bar Code appeared for 14
weeks in the Sunday Magazine section of The Times.

Thinh has shown us a large variety of different puzzles of his own creation, all of a
somewhat mathematical flavor. We asked him a few questions in preparation for this
note. He shared with us that he solves all his puzzles manually, and uses the time it
takes him to estimate their difficulty. He has surprised himself a few times with how
hard some of his creations turned out to be. Although the name “Partiti” is probably
self-explanatory, most of his puzzle names are inspired by Japanese puzzles, of which
he confesses to be a big fan.

Thinh advises readers interested in creating their own mathematical puzzles that it
is necessary to build a basic foundation and to read about numbers and logic puzzles.
It took him five years to acquire this foundation himself. He indicates that some of
the examples he has submitted to this MAGAZINE are harder than the ones he has had
featured in The New York Times, and hopes to publish a book of his own puzzles.

Acknowledgment We thank Thinh Lai for his enthusiasm and help with the preparation of this note.
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Summary. We introduce PARTITI, the puzzle that will run in this MAGAZINE this year, and use the opportunity to
recall some basic properties of integer partitions.
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PARTITI PUZZLE

How to play. In each cell, place one or more distinct integers from 1 to 9 so that they
sum to the value in the top left corner. No integer can be used more than once in hori-
zontally, vertically, or diagonally adjacent cells.

The solution is on page 15.

—contributed by Lai Van Duc Thinh,
Vietnam; fibona2cis @gmail.com


https://nyti.ms/2sfDb1f
http://mathscinet.ams.org/mathscinet/mrauthorid/684109
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How Franklin (May Have) Made His Squares

RONALD P. NORDGREN

Rice University
Houston, TX 77251
nordgren@rice.edu

Benjamin Franklin is well-known as a patriot, statesman, diplomat, writer, and scientist.
In addition, he had a keen interest in numbers as described in great detail by Pasles
[13-15]. In particular, Franklin was interested in the construction of magic squares and
circles. He spent considerable effort on this endeavor as a young man (perhaps while
clerking in the Pennsylvania legislature) and later in life. However, the motivation for
his interest remains somewhat of a mystery. In a letter to an English mathematician he
answered the question of the usefulness of his endeavors as follows [15, p. 125-126]:

Perhaps the considering and answering of such questions may not be altogether
useless if it produces by practice an habitual readiness and exactness in mathe-
matical disquisitions, which readiness may, on many occasions, be of real use.
In the same way, may the making of these squares be of use.

After stating that the construction of ordinary magic squares was easy, he added:

I had imposed on myself more difficult tasks, and succeeded in making other
magic squares, with a variety of properties, and much more curious.

Indeed, Franklin imposed complex requirements on his squares that differ from
those of the usual magic squares. His special magic squares and their construction re-
main of interest to the present day. Unfortunately, Franklin did not disclose his methods
of construction and various methods have been proposed. One method of constructing
Franklin squares is analyzed here and other methods are discussed. We begin with def-
initions of various types of magic squares.

All rows and columns of a semi-magic square matrix must sum to an index number
m. If its main diagonal and the cross diagonal also sum to m, then the square is magic.
Natural n x n (order n) magic and semi-magic squares have elements 1,2, ..., n? for
which

m=2+1) M
: .

Magic squares originated in China about 2000 years ago according to Cammann [4].
They have received considerable attention in the mathematical literature over the years
as detailed in books by Pickover [16] and Pasles [15, Chapter 2].

However, Franklin did not care for the two diagonal sum conditions on magic
squares. Instead, he defined four families of bent diagonals which must sum to m.
In the following families of order-6 squares, elements on the six bent diagonals (with
wraparound) have the same symbol, see Figure 1. These four families are named for the
direction of their “V” for future reference. Also, Franklin required that the elements on
all left and right half-rows and all upper and lower half-columns of his squares must sum
to m/2 which makes his squares semi-magic. This requirement forces natural Franklin
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Figure 1 Families of bent diagonals.

squares to be of doubly even order (n = 4k). In addition, he required that elements in
all 2 x 2 subsquares (including broken ones) of his order-n square sum to 4m/n.

In 1769, Ben Franklin published an order-8 and an order-16 square that met his three
sum conditions. Here is his order-8 square [15]:

52 61 4 13 20 29 36 45
14 3 62 51 46 35 30 19
53 60 5 12 21 28 37 44
Ao |11 6 59 54 43 38 27 22 2
8= 155 58 7 10 23 26 39 42
9 8 57 56 41 40 25 24
50 63 2 15 18 31 34 47
16 1 64 49 48 33 32 17

His published order-16 square is given by Pasles [13,15], Jacobs [7], Morris [8], and
Nordgren [11]. Several other Franklin squares have been found among his papers as
reported in [13-15].

Franklin’s method of constructing his squares has been the subject of considerable
speculation over the years since he did not indicate it. His two published squares can be
constructed in various ways. In 1776, Euler formed a magic square by linear combina-
tion of two auxiliary squares. According to Pasles [15], this same composition method
was used by Youle in 1813 to construct Franklin’s two published squares and likely
by Franklin himself. However, it is not clear how Franklin formed his two auxiliary
squares, if indeed he used this method.

Another early effort, by Carus in [2], gives a direct construction of order-8 and order-
16 Franklin squares that differ from those published by Franklin. A somewhat simpler
direct construction by Jacobs [7] gives Franklin’s two published squares, one of order
24, and supposedly those of order 8k. Jacobs’ direct method involves five prescribed
steps for sequential placement of the integers in a natural Franklin square of order 8%.
His approach appears to arise from a generalization of the element pattern in Franklin’s
published order-8 and order-16 squares but a proof of its general applicability is lack-
ing. Also, an order-32 Franklin square is presented by Behrforooz [3] without an indi-
cation of its method of construction, although it can be constructed by Jacobs’ method.

Several direct methods of constructing Franklin squares are posted by Hurkens [6]
who shows by exhaustive search that no natural order-12 Franklin squares exist. Also,
Pasles [14] shows that there are no natural order-4 Franklin squares. Numerical gen-
eration of all natural order-8 Franklin squares is carried out by Schindel et al. [17].
A method of constructing nonnatural Franklin squares from Hilbert bases is given by
Ahmed [1].

Here, we employ Euler’s composition method to systematically construct Franklin
squares of order n = 8k. We obtain two types of formulas for the elements of our two
auxiliary squares that allow straightforward numerical formation of Franklin square
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matrices of order 8k. From these formulas, we verify that our auxiliary squares are
suitable for construction of Franklin squares. Since our construction method leads to
Franklin’s published squares for k = 1, 2, it may be regarded as an extension of his
methodology and may have been used by him.! This speculation is supported by an
examination of the Eulerian composition of three order-8 Franklin squares by Pasles
[15] and two order-16 Franklin squares by Morris [8] and Nordgren [11]. The two aux-
iliary squares for these squares follow regular patterns and it seems difficult to construct
some of them by a direct method. The reader is invited to try!

Furthermore, our composite construction method produces the order-24 Franklin
square of Jacobs [7] (shown in [11] with auxiliary squares) and the order-32 Franklin
square of Behrforooz [3]. Although this correspondence lends support for Jacobs’ di-
rect method, an explicit connection between the two construction methods has not been
found.

In a pandiagonal square, elements on all diagonals in both directions (including bro-
ken ones) sum to m. Some Franklin squares also are pandiagonal, including one-third
of the order-8 natural ones [17]. In what follows, we show that a Franklin square can be
transformed to a pandiagonal magic square in two ways but the converse is not true in
general. Also, Nordgren [10] shows that order-8k pandiagonal Franklin magic squares
can be obtained from transformation of complete (or most-perfect) magic squares that
are constructed and enumerated by Ollerenshaw and Brée [12].

Franklin square construction

The three sum conditions for a Franklin square are stated in the above introduction. In
what follows, Franklin squares are treated as square matrices. For a Franklin matrix F;,
of order-n, Euler’s composition formula [5] can be written as

Fn=nQn+Rn+Un7 (3)

where O, and R, are order-n orthogonal matrices and U, is the unity matrix with all
elements 1. Orthogonal matrices are defined as having each ordered pair of elements in
the same position in the two matrices occurring once and only once. A natural Franklin
matrix F, can be constructed by requiring that the quotient matrix Q, and the remainder
matrix R, have elements 0, 1, ..., n — 1 repeated n times. If such Q, and R, are orthog-
onal and satisfy the three Franklin sum conditions with m replaced by 7t = n(n — 1)/2,
then F, forms a Franklin matrix. However, these conditions may not be necessary ones
(see Nordgren [11] for counterexamples of a magic and a semi-magic square).

Order-8 square Franklin’s order-8 matrix Fg of (2) is obtained from (3) with

6 7 0 1 2 3 4 57 3 4 3 4 3 4 3 47
1 07 65 4 3 2 52525 25 2
6 7 0 1 2 3 4 5 4 3 4 3 4 3 4 3
1 076 5 43 2 2525 25 25
B=16 7012345 B=le1 616161 )
1 07 65 43 2 0707 070 7
6 7 0 1 2 3 4 5 161 616 1 6
1 07 6 5 4 3 2] L7 07 07 0 7 0

1 On the other hand, one referee states that this seems unlikely and another referee states that Jacobs’ construction
seems like something Franklin would construct.
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The auxiliary matrices Qg and Rg can be constructed in a systematic way that can be
extended to higher-order matrices n = 8k. The quotient matrix Qg starts with 0 in row
1, column 3 and the entries continue sequentially with wraparound. Each element of the
second row is the 7-complement of the element of the first row in the same column and
the remaining rows are alternating copies of the first two rows. The remainder matrix
Rg can be constructed by first forming its main diagonal by sequentially positioning its
elements starting with O in the lower right corner, 1 next upward, skipping 4 rows, then
2,3 upward, and finally 4, 5, 6, 7 downward. The rows are filled out with alternating 7-
complements of its diagonal element and the diagonal element itself. The construction
of the first row of Qg and the diagonal of Rg are the crucial elements of our construction
method. Next, we show that the construction of Q and R can be generalized to order
n = 8k and give a Franklin matrix from (3).

Higher-order squares The foregoing constructions for Qg and Rg can be generalized
to construct Franklin matrices of order n = 8k by the following procedure:

1. Form the quotient matrix Q, by entering O in column n/4 4 1 of row 1 and en-
tering integers sequentially in the remaining columns with wraparound. Form
the second row by taking the n — 1 complement of the entries in the same col-
umn of the first row. Form the remaining rows by alternating copies of the first
two rows.

2. To form the remainder matrix R,,, first form its main diagonal by entering 0 in the
lower-right corner and entering integers sequentially upward for n/4 elements.
Skip to row n/4 and continue sequential entries upward to the upper-left corner.
Continue sequential entries from row n/4 + 1 downward to fill out the diagonal.
Take the n — 1 complement of the diagonal elements and alternate them with the
diagonal elements to fill out the rows of R,,.

3. Combine Q,, R,, and U, according to (3) to obtain a Franklin matrix F,.
Formulas for the elements of 0, and R, can be expressed in two ways and used to
verify that they are orthogonal and satisfy Franklin’s three sum conditions.

Element formulas I In the first way, the elements of the quotient matrix Q, can be
written as

O, 1 2 ... fA-—-1 i n+1 n+2 ... n-1 n

1 37 3i+1 ... n—2 n-—1 0 1 .. 3n-2 3a-1

2 Ai-1 a-2 .. 1 0 n—1 n—2 ... A+l A

3 3 341 ... n—2 n—1 0 1 ... 3i-2 3i-1

4 A-1 a-2 ... 1 0 n—1 n-2 .. A+l A |
n—1 3n 3i+1 ... n—=2 n-—1 0 1 .. 3n-2 3n-1

n i-1 n-2 1 0 n—1 n-—-2 n+1 il

where 7 = n/4 = 2k and row/column numbers are in bold type. In view of the com-
plementarity of odd and even row entries, it is easily seen that the half-columns sum to
n(n — 1)/4 = /2 as required. In the first row, the first element 37 can be paired with
the element in column n/2, namely, 7i — 1 and the second element 371 + 1 with 7 — 2,
etc. Since there are n/4 such pairs that add to n — 1, the left half of the first row sums
to /2 as required. Similarly for the right half of the first row. The proper half-row
sums for the second row then follow from complementarity. The V-Right and V-Left
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bent diagonals (Figure 1) sum to n(n — 1)/2 = i due to complementarity. For n = 8k
(essential), the elements of the first V-Down bent diagonal can be summed pair-wise
on the rows giving

Z(3ﬁ+3ﬁ—1)+g(ﬁ—2+ﬁ+1)=g(n—l):m. (5)

The second V-Down bent diagonal sums to 7 in view of complementarity and the re-
maining V-Down bent diagonals are identical to the first two. The V-Up bent diagonals
have the same elements as the V-Down bent diagonals and therefore they also sum to 7
for n = 8k. Furthermore, the sum of the elements in all 2 by 2 subsquares of Q, is seen
to be 2(n — 1) = 4m/n as required. Thus, the quotient matrix Q,, satisfies the Franklin
sum conditions for n = 8k.

The remainder matrix can be written as

[mm mm}
R.=| " (©6)
Rf,zl) R’(122)

where R(') and R?? are n/2 by n/2 submatrices with elements given by

RUD 1 2 ... h i+1 Aa+2 ... 2i
1 2h—1 24 ... 2a 2i—1 24 ... 27
2 2i+1 20—2 ... 2A—2 | 2A+1 2A—2 ... 2A—2
fi 3i—1 A ... @ 3”—1 A ... @
n+1 2 2A—1 ... 2A—1 2 2a—1 ... 2a—1

n+2 2n—-2 2n4+1 ... 2i+1 2i—2 2n+4+1 ... 2i+1

[\°]
=>
Y
(O8]
Y
|
—
(O8]
Y
P
=
(O8]
oY
|
—
]
=>
|-
o

R,(fz) 1 2 n n+1 n+2 ... 2i
1 3n Ai—-1 ... A—1 3i A—-1 ... Ai—1
2 A—-2 3n+1 ... 3A+1 An—2 3ia+1 ... 3i+1
n 0 n—1 n—1 0 n—1 n—1

n+1 A—1 3i 3i n—1 3i 3i

4+ 2 3a+1 A-—-2 n—2 3A+1 n-—2 n—2
2 n—1 0 0 n—1 0 0

with diagonal elements and row/column numbers in bold type. Also, R{'? = R(!!) and
RZD = R(22) a5 is clear from their construction and is exhibited by Rg of (4). Since
the right and left half-rows of R, consists of n/4 alternating complements, the two
half rows sum to n(n — 1)/4 = m/2 as required. In view of its construction, the main
diagonal entries consist of n/2 pairs of complements on its upper and lower half. There-
fore, row entry complementarity forces the half columns also to consist of n/2 pairs
of complements that sum to n(n — 1)/4 = m/2 for n = 8k (essential). In view of the
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diagonal construction and row-entry complementarity, the V-Right and V-Left bent di-
agonals contain the integers 0, 1,...n — 1 that sum to n(n — 1)/2 = m as required.
The V-Down and V-Up bent diagonals consist of n/2 pairs of complements that sum
to 7. Furthermore, the sum of the elements in all 2 by 2 subsquares of R, is seen to
be 2(n — 1) = 4rm/n as required. Thus, R, satisfies the Franklin sum conditions for
n = 8k. Since Q, and R, satisfy the Franklin sum conditions, so does F, from (3).
The orthogonality of the matrices 0, and R, can be established by considering pairs
of their rows. For example, row 1 of R, has elements 2/i — 1,274,272 — 1, ..., 274 and
row /i + 1 of R, has elements 27, 2/ — 1, 27, ...,2A4A — 1. Row 1 and row 7i + 1 of Q,,
contain elements 0, 1, ..., n — 1 in the same order. Thus, the pairs from row 1 and row
i+ 1 of O, and R, form all relevant pairs ending in 27i and 277 — 1. Continuation of
this row pairing process leads to the conclusion that all relevant ordered pairs of Q,
and R, occur once and only once, i.e., @, and R, are orthogonal as required. Thus, our
composition construction method produces an order-8k natural Franklin matrix.

Element formulas I The elements of the quotient and remainder matrices Q,, and
R, (n = 8k), constructed as indicated above, are given by

3
Qu(i, j) = —[1+( 1] = (=1Y [j+£—1]modn,
(5 — i) (=D + 1311 = (= 1)), l<is<i,
Ry, j)=1(+5—-1) =D+ 1 —(-DF], F<i< (D
(n — i) (=1 + L1 — (= 1)), ¥ <i<n

These formulas and (3) can be implemented in Maple®, MATLAB®), and Excel® to
generate numerical Franklin squares of order n = 8k. The Heaviside step function can
be used to enable the formula for R,,.

The elements Q, and R, given by (7) can be shown to satisfy the Franklin sum
conditions on half-rows, half-columns, and the four families of bent diagonals. For
example, the V-Right bent diagonals of Q,, have the sum

n/2

Z[Qn(z z+£)+Qn(z+ §—z+1+£)]=g(n—1), C=1,2,....n).

i=1

Also, from (7) it can be shown that all 2 by 2 submatrices of Q,, and R, sumto 2(n — 1),
ie.,

On(l, )+ On(i, j+ D+ Qi+ 1, )+ Qu(i+ 1, j+ 1) =2(n = 1),

and similarly for R,. Thus, by (3), all 2 by 2 submatrices of a Franklin matrix F,
(n = 8k) sum to 2(n% + 1).

Transformation to pandigonal magic squares

We consider transformation of Franklin matrices to pandiagonal magic matrices (de-
fined in the introduction). Following Nordgren [9], we define the order-n shifter matrix
K, as having elements K,,(1,n) =1, K,(i,i — 1) = 1 (i = 2, 3, ... n), and all other el-
ements 0. We define the order-n reflection matrix R, as having elements 1 on the cross
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diagonal and all other elements 0. For example,

000 1 000 1
100 0 001 0

Ks=1lo 1 00| ®=|lo10 0 ®)
0010 100 0

The matrix product K,,M,, shifts the elements of a matrix M,, down one row (bottom row
to top) and M,,K,, shifts them one column left (first column to last). Matrix powers of K|,
enable multiple row/column shifts. The matrix product R, M, reflects the elements of
M,, about its horizontal axis, M, R, reflects the elements of M,, about its vertical axis,
and R,M, R, rotates the elements of M 180°. Also, I, is the order-n identity matrix and
0,, is the order-n zero matrix with all elements 0.

As noted in [9], the pandiagonal sum property leads to

Y K PIKY =mU, and Y (K, PlK,) = mU,, ©)
i=1 i=1

which provide a means of checking this property.
An order n = 8k Franklin square F; can be transformed to a pandiagonal magic
square P, by permuting the columns in its lower half by means of the matrix formula

Pn_|:0ﬁ Oﬁ:|Fn+|:Oﬁ Rﬁj|E1|:If Oﬁ:|’ (10)

where

/(11) /(12) (11) (12)
=0 F Fo=|f,, I

n P,(z]) /(22) | » n 20 22) |
i i

i =n/2 = 4k, and Pnﬁ(ij), ﬁ(ij), I;, O, R are i X 7i submatrices, e.g. forn = 4
1 0 0 O 0 0 0 O
L O] |01 00 O, O] |0 0 0 O (an
O, O, [0 0 0 O]} 0O, R[]0 0 0 1|
0 0 0 O 0 01 0

Note that normal matrix multiplication applies in (10). The V-Right and V-Left bent
diagonals of F;, in (Figure 1) become the Down-Right and Down-Left broken diagonals
of P, respectively. Similarly, F, can be transformed to a pandiagonal matrix P, by
permuting the rows in its right half by means of the matrix formula

v I;  0O; O: I Oi O;
P"_Fn|:0ﬁ Oﬁ]+[1ﬁ Oﬁi|Fn|:0ﬁ Rﬁ:|. (12)

The V-Down and V-Up bent diagonals of F;, in Figure 1 become the Down-Right and
Down-Left broken diagonals of P,’, respectively. The magic row/column sum condi-
tions are satisfied by P, and P, since F, satisfies half-column and half-row sum con-
ditions that are unchanged by the transformations. Thus, P, and P, are pandiagonal
magic squares. The transformations (10) and (12) provide a means of verifying the
four Franklin bent-diagonal sum conditions on F, by using (9) to verify that P, and P,
are pandiagonal. Nordgren [10] gives simpler matrix formulae for the three Franklin
sum conditions.
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For example, application of (10) and (12) to the Franklin square (2) gives the pan-
diagonal magic squares

52 61 4 13 20 29 36 45
14 3 62 51 46 35 30 19
53 60 S5 12 21 28 37 44
11 6 59 54 43 38 27 22

Pe=148 33 32 17 16 1 64 49|
18 31 34 47 50 63 2 15
A1 40 25 24 9 8 57 56
23 26 39 42 55 58 7 10
F52 61 4 13 42 39 26 237
14 3 62 51 24 25 40 41
53 60 5 12 47 34 31 18

p_ |11 6 59 54 17 32 33 48

5=155 58 7 10 45 36 29 20 |

9 8 57 56 19 30 35 46
50 63 2 15 44 37 28 21
|16 1 64 49 22 27 38 43

which can be checked for pandiagonality using (9).
Given a pandiagonal magic square P,, the inverse transformations from (10) and

(12) give
;| I Oj Oi O O; I
M"_[Oﬁ Oﬁ:|Pn+|:Oﬁ Rﬁj|Pn|:Iﬁ Oﬁ:|’

"o Iﬁ Oﬁ Oﬁ Iﬁ Oﬁ Oﬁ
M, _P"[Oﬁ o: |tk o Fa Oi Ra]’ (13)
where M), and M, are not Franklin matrices in general since M), satisfies the V-Right
and V-Left bent-diagonal sum conditions whereas M, satisfies the V-Down and V-Up
bent-diagonal sum conditions. Furthermore, M, and M, are not likely to satisfy the
other two Franklin sum conditions. Therefore, a pandiagonal magic matrix cannot be

transformed to a Franklin matrix in general. However, as noted earlier, Schindel et al.
[17] found that one-third of the order-8 natural Franklin squares are pandiagonal.
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are shown to be orthogonal and to satisfy Franklin’s three sum conditions. Squares of order 8 and 16 agree with
Franklin’s published squares and those of order 24 and 32 agree with squares previously constructed by a direct
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My favorite band is currently Metric. My kids’ favorite band is currently Metric. Our fa-
vorite video is “Gimme Sympathy” [1], in which the band members switch instruments
several times. Below, we translate their movement among the different instruments into
the language of permutations. We can then use these permutations to define a distance
function, or metric, on the set of all permutations of four objects, known as the sym-
metric group of degree 4 (denoted S4). To do this, we employ the word metric, which
is an idea from the field of geometric group theory (see [3], for example). In the end,
we define the deliciously named Metric metric on Sy.

The video

The video for “Gimme Sympathy” features the members of Metric switching instru-
ments in a curious manner. The camera might show the guitarist, then the drummer, and
then return to the guitarist—only to find that a different person is now playing guitar.
We will use the movement of the band members to obtain a set of permutations.

Impressively, this video was shot in one take, so there are no editing tricks. The video
can be seen at the following two links, the first of which is the official music video with
the second being a behind-the-scences video that shows how they were able to shoot
the video without editing.

1. http://www.youtube.com/watch?v=LqldwoDXHKg
2. http://www.youtube.com/watch?v=jHt5caARmhO

The video starts with the lead singer and keyboardist, Emily Haines, alone and
preparing to play some music with her bandmates. She soon moves to the rehearsal
space, and we quickly see the band’s usual formation: Haines on lead vocals, James
Shaw on guitar, Joshua Winstead on bass, and Joules Scott-Key on drums. Soon after,
the camera focuses on the guitarist Shaw. The camera then focuses on the drum kit, al-
though we are surprised to see that Haines is now playing drums—several of the band
members traded instruments while the camera was fixed on Shaw.

This movement can be described in the language of permutations. We will identify
1 with the location of the microphone, 2 with the guitar, 3 with the bass, and 4 with
the drum kit. We can now define a permutation. We know that Shaw was a fixed point,
as he was playing his guitar the entire time, so 2 maps to 2. Similarly, the vocalist
(Haines) moves to the drums, so 1 maps to 4. However, we do not know what the bassist
(Winstead) or drummer (Scott-Key) did. It could be that the vocalist and drummer
simply swapped positions, which would yield the permutation (1, 4). But it could also
be that the vocalist went to the drums, the drummer went to the bass, and the bassist
went to the microphone; in this case, the permutation would be (1, 4, 3).

Math. Mag. 91 (2018) 33-36. doi:10.1080/0025570X.2018.1405697 © Mathematical Association of America
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Fortunately, the “making of” video clears up this ambiguity, showing that Haines
moves to the drums and Scott-Key moves to the bass. Therefore, the first permutation
is (1, 4, 3) since the vocalist moved to drums, the drummer moved to bass, the bassist
moved to vocals, and the guitarist remained at the guitar.

TABLE 1: The permutations in the first and fourth steps require viewing [2] to eliminate
ambiguity.

Position Vocals Guitar Bass Drums Permutation
0 Haines Shaw Winstead Scott-Key —

1 Winstead Shaw Scott-Key Haines (1,4,3)

2 Shaw Winstead Scott-Key Haines (1,2)

3 Shaw Haines Scott-Key Winstead 2,4)

4 Winstead Haines Scott-Key Shaw (1,4)

5 Winstead Scott-Key Haines Shaw 2,3)

6 Scott-Key Shaw Haines Winstead (1,4,2)

7 Haines Shaw Winstead Scott-Key (1,4,3)

We repeat this process for every rearrangement in the video and summarize the re-
sults in Table 1. Thus, we now have a set of permutations

My =1{(,4,3),(1,2),(2,4),(1,4),(2,3), (1, 4, 2)}

that we will use later in this paper.

Word metrics on groups

The obvious thing to do when a band named Metric hands you a set of permutations is
to try to make a metric from it. Recall that a metric on a set S is a function d that takes
pairs of elements of S to nonnegative real numbers, and such a function d must fulfill
the following for all x, y, z € S:

1. d(x,y)>0

2. d(x,y)=0ifand onlyif x =y
3..d(x, y) =d(y, x)

4. dx,y)+d(y,z) = d(x, 2).

There are several possible metrics to use, but a common metric for groups is the
word metric, which we describe. Let G be a group with a subset W such that W is
closed under inverses and the smallest subgroup containing every element of W is G
(i.e., W generates G, and we call W a generating set that is closed under inverses). We
now define a metric from W by defining two functions. First, we define a norm on G:
for all g € G, denote by |g| the minimal number of elements of W that are needed to
multiply together to yield g (we define the product of 0 elements of W to be the identity
e of G, so |e] = 0). This is known as the word norm of g with respect to W.

We now use this word norm to define the following: let d : G x G — N be defined
by d(x,y) = |xy~!| for all x, y € G. (Note the parallel to the distance function on R,
where the distance between x, y € Ris |x — y|; here, we simply use an element’s inverse
to mimic subtraction.) We claim that this function d defines a metric on G. Let x, y, and
z be elements of G. Then
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1. d(x,y) > 0: We have d(x,y) = |xy~'|, which is just the word norm of some
element of G and therefore nonnegative.

2. d(x,y) = 0 if and only if x = y: If d(x,y) = 0, then 0 = d(x, y) = |xy~!|; the
only element with word norm 0 is e, so we must have e = xy~!, or x = y. If
x =y, thend(x,y) =d(x,x) = [xx~'| = |e] = 0.

3. d(x,y) =d(y,x): This is the reason why we require W to be closed un-
der inverses. First, note that if |x] = n, then |x~!| = n. To see this, suppose
that x can be written as w;ws . ..w, for some elements w; € W; then x~! =
w oy 1wl_l. Since we ensured that W is closed under inverses, we know
that w; ' € W. Therefore, |x| > [x~!|. By a symmetric argument, [x~!| > |x|, so

we conclude they are equal. This gives us

dx,y) =[xy = [y ™) = T = d(, ).

4. d(x,y)+d(y,z) > d(x,z): Let n = |xy~'| and m = |yz~!|. Then there exist

w; €W and u; € W such that xy™' = wjws ... w, and yz7' = wjuy .. . uy.
Then

2t =x07 =y Ho = (s wy) s - ),

sod(x,z) <n+m=dx,y)+d0,2).

Therefore, the word metric is indeed a metric. We now create a word metric from
M.

The Metric metric on S,

We now use M, to make a word metric. We first note that the 3-cycles in My
do not have an inverse in My, which creates a problem. For example, note that
(1,2),(1,4),(1,4,2) € My but (1,2,4) ¢ My, so (if multiplication is done left-to-
right)

d((1,2,4),e) = (1,2, e = [(1,2,4)] = |(1,2)(1,4)| =2
while
de,(1,2,4) = le(1,2,4)7 " =(1,4,2)| =1,

so d((1,2,4),e) # d(e, (1,2,4)), and M, yields distances that are not necessarily
symmetric.

Our solution is to extend M, to a set M that includes all inverses of elements of M;
this will ensure that our word metric is symmetric. We simply add the inverses of the
two 3-cycles:

M:={(1,4,3),(1,2),(2,4),(1,4),(2,3),(1,4,2),(1,3,4), (1,2,4)}.

The only other requirement for M to be the foundation of a word metric is that M must
generate S4; we can see this in Table 2, since every x € S4 can be written as a product
of elements in M.

Therefore, we can define a function d : S4 x S4 — N from the norm described in
Table 2; the function d is a metric by the previous section. Therefore, we have defined
the Metric metric on Sy, and we can say the distance between, say, (2, 4) and (1, 3, 2)
is

d((2,4),(1,3,2) = [(2,4)(1,3,2)7' = (2, 4)(1,2,3)| = |(1,2,4,3)| = 2.
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TABLE 2: Multiplication is done left-to-right, so (1, 2)(1, 3) is (1, 2, 3), not (1, 3, 2).

Element Product in M Norm Element Product in M Norm
e empty product 0 (1,2,4) (1,2,4) 1
(1,2) (1,2) 1 (1,4,2) (1,4,2) 1
(1,3) (1,4)(1,4,3) 2 (1,3,4) (1,3.4) 1
(1,4) (1,4) 1 (1,4,3) (1,4,3) 1
(2,3) 2,3) 1 2,3,4) 2,3)(2,4) 2
2,4) 2.4) 1 2,4,3) 2.4)(2,3) 2
(3.4 (1,4,3)(1,4) 2 (1,2,3,4) (1,2)(1,3,4) 2
(1,2)(3,4) (1,4,3)(1,4,2) 2 (1,2,4,3) (1,2)(1,4,3) 2
(1,3)(2,4) (1,4,2)(1,4,3) 2 (1,3,2,4) 2,3)(1,3,4) 2
(1,4)(2,3) (1,4)(2,3) 2 (1,3,4,2) 2,4)(1,3,4) 2
(1,2,3) (2,3)(1,2) 2 (1,4,2,3) 2,3)(1,4,2) 2
(1,3,2) (1,2)(2,3) 2 (1,4,3,2) 2,3)(1,4,3) 2
Conclusion

We were able to use the permutations from the “Gimme Sympathy” video to create the
Metric metric on S4. This is not much more than an amusing result, but the use of word
metrics on groups is an important idea with uses beyond providing mathematicians with
an excuse to watch music videos on YouTube. Indeed, word metrics are a common tool
in the field of geometric group theory, which is a field that uses geometric methods to
better understand groups.
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We came across this exercise [16, Problem 923] in a problem-solving seminar,
where one of the topics was functional equations: Determine all functions f : R — R
satisfying

f)+ 1)
14+ f)f ()

In spite of our efforts, we were not able to understand either the hints or the solution.
The hints state that the only possible solutions are constant functions. The critical part
of the reasoning reads as follows: If a solution f satisfies f(0) = O, then the substitution
x = —y shows that f is identically zero.

However, this substitution merely shows that f must be an odd function. Therefore,
the official solution cannot be complete. Unfortunately, neither is it correct, since the
following calculations demonstrate that f(x) = tanh(x) satisfies the same addition rule
(and clearly f(0) = 0):

Jx+y) = (M

sinh(x +y)  sinh(x) cosh(y) + cosh(x) sinh(y)
cosh(x +y)  cosh(x)cosh(y) + sinh(x) sinh(y)
_tanh(x) + tanh(y)
"1 + tanh(x) tanh(y)

Hence we wondered: How can the solutions of equation (1) be described completely?
First, we determine differentiable solutions to equation (1), and then we examine the
necessity of differentiability. A careful analysis of the calculation suggests two ways to
drop the extra assumption of differentiability. Proceeding the first way, we express the
general solutions in terms of exponential functions. The second way links the general
solutions to additive functions.

tanh(x + y) =

Prelude: preliminary experiments

Throughout this note, we assume f(x)f(y) # —1 forallx, y € R, soequation (1) makes
sense. Note that substituting x = y = 0 in equation (1) leads to the algebraic equation
13 =t fort = £(0) and hence f(0) € {—1, 0, 1}. Assume now that f(xo) = 1 for some
xp € R. Then expanding f(x + xo) with the addition formula shows that f(x) = 1 for
all x € R. Similar reasoning implies that f(x) = —1 for all x € R, provided there exists
some xy € R with f(xg) = —1. These cases are trivial. Therefore, in the rest of the note,
only the remaining case of f(0) = 0 is investigated. The previous remarks ensure that
the range of f does not include {—1, 1}, when f(0) = 0.
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To get the complete solution, assume that the function we are seeking is as “beauti-
ful” as we want it to be, by letting it be differentiable everywhere. Of course, this is not
required, since equation (1) may be true without this assumption. But we hope, on one
hand, that we can apply some standard tools of analysis, and on the other hand, that
later we will be lucky enough to get rid of the assumption. We consider the rearranged
form

Ja+nA+ f)fe) =)+ fO),

and differentiate it with respect to the variable x. Then substituting y = —x, one gets
the separable differential equation:
f@) = FO)1 = f2(x). 2

In order to solve the differential equation, information about the range of f is needed.
The observations at the beginning of this section imply that there is no x with | f(x)| > 1.
If there were one, the intermediate value theorem would imply that either f(xp) =1
or f(xyp) = —1 for some xy. Then f would be identically equal either to 1 or to —1,
contradicting f(0) = 0. Knowing this, equation (2) can be separated and solved (where
we let ¢ = f/(0)):

X / X ! X !
J'@) P Q) dl—i—l Q)

o 1=r20)" 2o 1+ f@) 2Jo 1=f@)
1 1
= 5 llog(l + JO)— — 5 log(1 — FO)i—o

| 1 I+
= 5 log(1+ f(x)) = 5 log(l — f(0) =log [ -— ;8

Solving for f in the above equation yields

. exp(2ex) — 1 _ exp(cx) — exp(—cx) _ sinh(cx)

f) =

= = = tanh(cx). 3)
exp(2ex) +1  exp(cx) + exp(—cx)  cosh(cx)

We had already shown that f(x) = tanh(x) is a solution to equation (1). From
equation (3), differentiable solutions to equation (1) are of the form y = tanh(cx). Can
we relax the assumption of differentiability? Let us try to calculate the difference quo-
tient at x, where x € R is fixed arbitrarily. Applying equation (1), we arrive at

f(X+h)—f(X):l.[f(X)+f(h) —f(x)}:f(h)- 1 -2
L+ f(0f(h) h 1+ f()f(h)

h h
If f is differentiable at zero, then f(k)/h has a finite limit at zero, which has already
been denoted by c. Moreover, f has to be continuous at zero, hence f(h) — f(0) =
0 as h — 0. Therefore, differentiability at zero implies differentiability everywhere.
Furthermore, as a side effect, equation (2) follows as 4 — 0. We summarize the above
thoughts in the following theorem.

Theorem 1. Consider those functions that are differentiable at zero and vanish at zero.
Such a function f : R — R is a solution to equation (1) if and only if f(x) = tanh(cx)
for some c € R.

However, one question still remains: Is it possible to get rid of the differentiability
condition completely?
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Intermezzo: additive functions

Cauchy’s functional equation is related to additive group homomorphisms of the real
numbers and satisfies

a(x +y) = a(x) + a(y). 4

Restricting this equation to the rationals, any solution turns out to satisfy a(x) = cx,
where ¢ € Q. Is the situation similar for the reals? For a long time, this question chal-
lenged mathematicians. For interesting historical details, see the Aczél’s book [2]. After
several efforts, the general solution was obtained by Hamel [12]. He proved that there
exist irregular solutions of the Cauchy equation, that is, additive functions on R differ-
ing from a(x) = cx. Irregular solutions have extremely strange behavior: their graphs
are dense on the plane, and they are not measurable. They are neither differentiable nor
continuous. Additive functions a(x) = cx are commonly referred to as regular additive
functions.

The Cauchy functional equation has many important and surprising applications
including to Hilbert’s third problem [10, 13] and to Buffon’s needle problem [4]. Both
of these problems can be found among the topics of Proofs from the Book [3].

Of course, the Cauchy equation plays a crucial role in the field of functional equa-
tions, too. For example, consider a related equation, the exponential Cauchy equation:

g +y) = g(x)g(y). &)

It can be proved that either g is identically zero or g = exp o a, where a is a solution to
the Cauchy equation. In other words, the general solution can be expressed via additive
functions. Tracing back the solution of a particular equation to the solution of a distin-
guished one is a typical method of this field. In ref. [9], Cauchy considered two further
related equations of the form f(xy) = f(x) + f(y) and f(xy) = f(x)f(y), which he re-
duced to equations (4) and (5), respectively. Additive and exponential functions are the
protagonists of the rest of this note.

Finale: answer completed

Returning to the original problem, the first part of equation (3) suggests expressing f
in terms of an exponential function. This observation leads to the first characterization
result.

Theorem 2. A function f : R — R is a solution to equation (1) satisfying f(0) = 0 if
and only if there exists an exponential function g : R — R such that
_ w1

g+ 1

Proof. As it had been observed earlier, equation (1) and the initial condition imply that
f(x) # 1, so that

Jx)

RIRESC)
1— f(x)

Then using equation (1),

I+ fx+y) 14+ ff0)+ fx)+ f()
1= fx+y) 14+ fOfQ) — f(x) — fO)
4@ 1+ )
S l—f 1-fO)

gx+y) =

g(x)g(y).
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In other words, g is an exponential function. For the converse statement, note that
g(x) + 1 > 0 since g is an exponential function. This fact ensures that f is well de-
fined. Moreover,

gx)—1 s—1
O+ et T et

- g(x)—1 . g)—1
I+ f0fQ» 1+ SO+ T g(y)+1

(g = D) + 1) + (g(x) + D(g(y) — 1)
C @@+ D+ 1) + (gx) — (g — 1)
_ 280g() -2 _ gty —1 Faty).

280)gM+2  gx+y)+1

Thus, f fulfills equation (1). [ |

Now let us turn our attention to the last part of equation (3). The tanh(cx) represents
the solution as the composition of a bijective solution and an additive function. The
second characterization result gives an alternative approach via this observation.

To formulate this result, the concept of groupoids is needed. A pair (G, *) is called a
groupoid, if G is nonempty and * : G x G — G is an operation. A mappinga : G — G
is said to be a homomorphism on the groupoid (G, *) if a(x * y) = a(x) * a(y) whenever
x,y € G. In other words, a satisfies the Cauchy functional equation on G.

Theorem 3. Let (G, ) be a groupoid, X # ¥, and F : X*> — X a given function. If the
equation f(xxy) = F(f(x), f(y)) has a bijective solution ¢ : G — X, then all solu-
tions have the form ¢ o a, where a : G — G is a homomorphism.

Proof. Direct calculation shows that f = ¢ o a is a solution. For the converse state-
ment, consider the mapping a = ¢! o f where f is a solution and ¢ is a bijective
solution of the equation in the theorem. Then, for all x, y € G,

a(x*y) =@ ' (f(x*y) = ¢ " F(F ), fO)))
= ¢ ' (F(p(ax)), p(a()))) = ¢~ (p(a(x) * a(y))) = a(x) * a(y).

This proves that a is a homomorphism, as required. |

Applying Theorem 3 in the particular settings G = R and X = (—1, 1), and using
the fact that ¢ = tanh is a bijective solution with f(0) = 0, the desired connection
between equation (1) and additive functions can be obtained easily: Any solution f :
R — R of equation (1) satisfying f(0) = 0 can be written in the form f = tanhogq,
where a : R — R is an additive function.

At first glance, the formulae in Theorem 2 and Theorem 3 seem to be quite alien to
one another. But, in fact, they are the same. We invite the reader to show their equiv-
alence. What have we gained with this small adventure? Besides an elementary ap-
proach, now we have the complete set of solutions to equation (1). Theorem 2 and
Theorem 3 apply when differentiability at zero fails, showing that this extra regularity
is a serious restriction in Theorem 1.

Postlude: some comments

Functional equations are a mainstay in competitions. Besides the motivating exercise,
the books of Brodskii—Slipenko [7], Lajko [15], and Small [17] demonstrate this fact
convincingly. Elementary problems can also have effect in recent researches (see [5, 6,
11]). For further details, see Kuczma’s green book [14], which gives a deep overview
of this field.
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The paper of Caccioppoli [8] and also a part of Aczél’s monograph [1] deal with
equations of the form f(x +y) = F(f(x), f(¥)). Among the applications, equation (1)
is also considered. However, their approach is completely different from ours, and their
methods require assumptions like monotonicity, continuity, and differentiability.

Surprisingly, Theorem 2 and Theorem 3 present the complete solution via sim-
ple calculations, while Theorem 1 gives only a partial answer using advanced tools.
(Though in the case of Theorem 3, some algebraic background is definitely needed.)
This demonstrates that an adequate approach can be both effective and simple simulta-
neously. Still, the role of Theorem 1 is not negligible: without it, any adequate approach
would not have been found.
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k 2n n
=Y j = Y Li=4) k.
j=1 k=1 k=1

Remarks. If the diagram above is extended to contain the odd squares too, then it

becomes clear that Y f_, k> = Y1_ Ty + Y4~} T;, which can also be derived from
the results given in either of the proofs without words [4] or [S]. Thus,

2n n

n—1 n—1
YD h=4(D T+ ) T|=4T,+8) T
k=1 k=1 k=1 k=1

which can also be derived by summing the squares of the even integers using the result
given in the proof without words [2] and the definition of 7,,. Finally, the reader is
invited to compare this to other proofs without words involving sums of squares and
triangular numbers, especially [1] and [3].
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[5] Page, W. (1982). Proof without words: Count the dots. Math. Mag. 55(2):97.

Summary. We visually display a relationship between sums of squares and the sum of an even number of trian-
gular numbers. Connections to some proofs without words appearing in the literature are briefly discussed.
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Given a geometric object in Euclidian space, a natural question that arises is how to
evaluate its volume and surface area. As we know from calculus, such geometric mea-
sures are often expressed in terms of multiple integrals. With a few exceptions, such
integrals are often hard to resolve analytically especially in higher dimensions. To ob-
tain estimates of the values of these integrals, one has to resort to numerical methods,
and often, in higher dimensions, the Monte Carlo method is the only method that is
practical. Closed-form expressions for geometric measures are of value in developing
and testing new numerical methods. Such measures are available for spheres and cubes
in R”, however, these objects may not serve the purpose fully. So the natural thing to
do is to examine closely related convex objects with fewer symmetries.

The first family of objects that comes to mind, that could serve our objectives, are n-
dimensional ellipsoids. It turns out that generalizations of n-dimensional ellipsoids are
also well-known, and they are interesting objects to look at as well—as some of them
are not necessarily convex. The purpose of this note is to develop a rather simple method
of deriving the volumes of a large collection of generalized ellipsoids. In view of the
well-known fact that the volume of the unit ball shrinks with increasing dimension,
we consider a sub-collection of n -dimensional /,,, unit balls which fit more tightly in
the cube than the unit ball, and discuss how their volumes decrease with increasing
dimension. For estimating the volumes numerically, we employ an elementary Monte
Carlo (MC) method that has a wider application. Finally, we take a brief look at volumes
of revolution in higher dimensions.

Volumes of generalized super-ellipsoids

In this section, we derive a formula for the volumes of generalized super-ellipsoid balls
defined by the equation ) _, [Z[P" < 1, p; > 0. The generalized unit balls in R" are
defined as the sets

{On o) sl + Il 4+ Iyl < 1, pi > 0

For p; = p > 1, papositive integer, and i = 1, 2, ..., n, we have the n-dimensional
I, balls. Generalized super-ellipsoid balls can be easily transformed into generalized
unit balls. Formulas for volumes of generalized super-ellipsoid balls were obtained by
Lejeune Dirichlet [4] and were rediscovered recently by Wang [10]. In this section,
we point out another derivation method initiated by Hein [6]. Due to the elementary
nature of the problem of evaluating the volume integrals, one would expect that the
methods utilized to be somewhat related. The common thread is due to the appearance
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of integrals related to the gamma and beta functions and the more flexible Gauss’
hypergeometric function. In the study of calculus and differential equations, these
functions are not identified as elementary functions and belong to the class of “special
functions.” Often special functions have integral or power series representations and
satisfy functional or differential equations. For the convenience of the reader, we recall
the definitions of these functions.

Definition 1 (Euler gamma function). The Euler gamma function is a higher tran-
scendental function defined by the integral

0
') = / e 'dt, x > 0.
0

It is easy to see that I'(1) = 1. Integration by parts yields the important formula
I'(x 4+ 1) = xI"(x), which allows us to extend the definition of the factorial to other real
numbers, and for a positive integer n, we see that I'(n + 1) = n!.

A closely related function also introduced by Euler is the beta function.

Definition 2 (Beta function). The beta function is defined by the integral
1
B(x,y) = f w1 —uw) " du; x,y > 0.
0

The formula B(x, y) = % relates the beta function to the gamma function. For
further properties of the gamma and beta functions, see [2].

Another special function which plays a central role in the theory of special functions
and in the theory of ordinary differential equations is the Gaussian hypergeometric

function. This function is a generalization of the geometric series X2 x".

Definition 3 (Gaussian hypergeometric function). Gauss’ hypergeometric function
is defined by the power series

e (@)
2Fi(a, b; c; 2) = Z Wﬁy lz| <1,
k=0
where a, b, ¢ are complex numbers, ¢ # 0, —1, —2, ..., and («); is the Pochham-
mer symbol defined as (@) = a(a +1)--- (¢ +k—1) = F{,"g)k), n>0,(a) =1 for
o # 1.
For convenience, denote ,F; by F. The following integral
1 d 1 X"
/(a—x’”)f dx:a[nixF(—,——;l-l-—;—), (1
m n m a

for |x"| < a, will be useful to us below. Hein employed equation (1) to compute the
volumes of three-dimensional super-ellipsoids. A large number of functions are special
cases of the Gaussian hypergeometric function. The limiting behavior of F(a, b; c; 2)
is discussed in [8] (chapter 4).

We denote the n-dimensional sphere centered at the origin and of radius r by
S, (r). The volume of S,(r) is given by v,(r) = % S, are special cases of the n-

2

dimensional ellipsoids E, given by Y ., j—z = 1. The volume of E, centered at the

origin is given by Vg, = v,(1) []_, ¢;, where the ¢;’s are the lengths of the semi-axes.
Whenever n > 3, S, and E, are also sometimes referred to in the literature as hyper-
spheres and hyper-ellipsoids, respectively. Herein, we refer to them as the n-sphere and
the n-ellipsoid, respectively. We reserve the prefix “hyper” to denote hyper-ellipsoids
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2m
E,(m) defined by the equation Z ( ) = 2,3, .... For convenience, and to dif-

ferentiate from super-ellipsoids and hyper-ellipsoids, we refer to geometric objects as-
sociated with the Fermat varieties described by Y 7, x2" = 1, m > 1, as Fermatoids.
Fermatoids are equiaxial hyper-ellipsoids and are n- dlmensional [, unit spheres. The
symmetry about the diagonals possessed by Fermatoids make them closer relatives and
generalizations of the n-sphere, and thus play a similar role. For instance, upon using
a linear transformation of the form y; = ’Ci the equation of a hyper-ellipsoid can be
converted into that of a Fermatoid. Now we give some notation that we employ in the
proof of Theorem 1.

Definition 4 (n-dimensional generalized super-ellipsoid ball). The n-dimensional
generalized super-ellipsoid ball is defined as

E(n, p) = {(xl,.. X)) : Z

The positive orthant of E(n, p) is defined as

E’(n, p) = {()Cl, .. .,.Xn) . Z(?)
i=1 Nt

The positive orthant of the generalized unit ball is defined as

l
l

<1,pi>0}.

Pi

Sla xiZO? pl>0}

E"(n,p)= {(yl,-..,yn) : Zy,-" <1, >0, p >0}-

i=1

For p; = 2m, m a positive integer greater than 1, i = 1,2, ..., n, we have the Fer-
matoid ball.

The following theorem gives a formula for the volumes of generalized
super-ellipsoids.

Theorem 1. The volumes of the generalized super-ellipsoids E (n, p) are given by
noo 1
T, c,F(l + pi)

noo1
r (1 +> 0 E)

Proof. The volume of E(n, p) is given by the integral

Ve(n, p) =2"

;pi>0’n=1,2,3,.... (2)

n

2”/ dxy---dx, =2" fe / dy; - - - dyy,
E'np) (l_[ ) E'(n.p)

i=1

where equality comes from the affine transformation

X1 X,
(yl,...,yn)—< ...,l).
C1 Cy

Let P,_; be denoted by

(o)

Di-1 klpk Pi-1
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The method we utilize below is similar to the one usually used to evaluate the iterated
integral for the volume of S53(1),

G L
V=8/0 dyn/O (1 =y7 =) dy».

Employing equation (1) and a result due to Gauss (Theorem 18 in [8], p. 47)

I'(c)I'(c —a—Db)
I'(c —a)'(c—b)

For Re (¢ —a — b) > 0, and c is neither zero nor a negative integer, we obtain

2
1 11 1
V:_6F _’__’E,l :_6‘/_5 :4_17-[
3 27 22 3\ 2 3

Therefore, we start first by integrating over y,, and employ equation (1) to obtain a
reduction in the dimension to get

F(a,b,c; 1) =

(1 Z:L—llyzpl)
/ dy1~--dyn=/ dy1-~-dyn_1/ dyn
E"(n,p) E"(n—1,p) 0

n—1 ﬁ
— 1 — y." dyl...dy_l

1

1
(l lel lz)lﬁr>1’n—l n—1 P
— dyl Ce dyan 1— yl-" dynfl
-/1;”(n—2,p) 0 ;

1 1

n—2 I’;1+Pn71
=P,_ 1 - v dyy---dy,—.
n—1 y Y1 Yn—2
/;”(}’L—Z,p)( ; l )

Next, repeating the process and using equation (1) again, we get

1 1

n—2 ﬁn+P”_1
Pn—l/ I_Zyii d}’1"'d)’n—2
E"(n—2,p) i=1

1 1 1

n—3 pn Pp—l - Pp-2
= Ip—-1- Pn—Z/ I - Zy,zm d)’1 ce dyn—3-
E"(n—3,p) i=1

Continuing the reduction process, we arrive at

HR1/ (1—y ’prd)ﬂ Hle,

which by Gauss’ theorem yields the volume in equation (2). |

Forc;=1,i=1,2,...,n and p; = p, where p is an integer, we obtain the vol-
umes of the n-dimensional /, balls (or Fermatoid balls for p > 2, even). Both the
method of Wang and the method of Dirichlet employed the transformations y; = ()",

i=1,...,n and made use of the integral f x| - - - |x,|""dx over E'(n, p), expressed
in terms of gamma functions. Wang employed a recurrence method in his derivation,
while Dirichlet made clever use of the beta function integral to reduce the problem to
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integrating over an n -simplex [4,10]. The method we employ is a straightforward ex-
tension of Hein’s method to higher dimensions and for all p; > 0, and it is somewhat
simpler as it does not involve the use of the Jacobian of the above transformation.

A well-known observation [9] is that the volume of the unit sphere (r = 1) is max-
imal at n = 5, and the volume of the unit sphere approaches 0 as n goes to infinity.
In contrast, the n-dimensional unit cube [%‘, %]" has volume one. Note also that the
unit ball is contained in the cube [—1, 1]", which has vertices at a distance equal to
J/n from the center. A rough explanation for the decay of the volume of the sphere
is that in higher dimensions, more measure of the cube is being shaved-off to obtain
the unit sphere. This explanation is based on the fact that all points inside the n-sphere
are within a unit distance from its center, whereas for the n -dimensional unit cube we
have points that lie at a distance \/g away from the center, and so most of the volume
of the unit cube is outside the unit sphere. Moreover, a statistical argument ([3], p.
184) shows that the expected length of an n-dimensional vector picked at random from
the unit sphere equals . This means that most of the volume of a high-dimensional
sphere is contained near the surface. One can ask if this is also true for generalized unit
balls, and how this can be characterized.

Toward this end, the integral in equation (1) should be of help in evaluating the
volume content of the end caps of Fermatoids with respect to a chosen coordinate plane.
Furthermore, note that the behavior of the volume of the n-ellipsoid E,, = v,,(1) ]_[l'-’:1 Ci,
does not behave like the volumes of S,(1) in general, as it depends on the limit of
the product []_, ¢;. We can ask if the volumes of Fermatoids behave similarly to the
volumes of S, (1). We know from equation (2) that the volumes of Fermatoids are given

(P42
by Vie(n, m) = 2" e
up with 2", which is the volume of the n-dimensional cube with sides equal 2. On the

other hand, fix m and let n go to infinity. By Stirling’s formula, we have

. First, it is clear that for a fixed n, if we let m — o0, we end

'l + na) ~ m("“)’m.

e

For o = 5, m > 1, it is not difficult to show that

201+ @) _

lim Vp(n’m) = lim =0.

n—o0 n—>00 /2mrna (%)na

In other words, once m is fixed, the volume of the Fermatoid behaves much like S, (1),
and hence, it attains a maximal volume for a certain dimension 7,,. Just as in the case
of S,(1), this dimension can be determined numerically.

A Monte Carlo method

Before arriving at equation (2), we initially computed the volumes using a geometric
Monte Carlo method that we now describe. First, generate a uniformly distributed set
of points on the surface of the unit sphere. It is well known that by generating u;,
1 < i < n, from the standard normal distribution, and after normalizing by the square
root of the sums of squares, ||u||, we obtain a uniformly distributed set of points (with
respect to Lebesgue measure) on the unit sphere. This method is due to Muller [7].
Generate a sample of N points on the sphere and employ these points to generate and
send random rays out from the origin to intercept the surface of the ellipsoid. Start at
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V = 0. If the length of the ray to the intersection point is R, we compute

TiR"

V=V+UH(R)=V+—”’
r(1+4%)

and so the final hyper-volume is approximately V/N. In other words, in this Monte
Carlo method, we estimate the volume of interest by the average of the volumes of
spheres in a spherical covering. Carrying out some numerical experiments on some
convex-shaped objects with known volumes shows that this method gives remarkably
good estimates for the volumes (see Tables 1 and 2).

TABLE 1: Volumes of Fermatoids of degree 4 obtained from equation (2) and estimates com-
puted from the MC method using 100,000 points, for different dimensions 7.

n MC Equation (2)
2 3.7085 3.7091
3 6.4768 6.4820
4 10.8050 10.7995
5 17.2798 17.2792
6 26.6993 26.6975

TABLE 2: Volumes of hyper-ellipsoids computed as in Table 1, of degree 4, for various dim-
ensions and semi-axes ¢; (taken in arithmetic progression).

n Ci MC Equation (2)
2 1,2 7.4081 7.4163
3 1,2,3 38.9441 38.8919
4 1,2,3,4 259.399 259.188
5 1,2,3,4,5 2083.2 2073.5

6 1,2,3,4,5,6 19,287 19,222

Volumes of revolution

In this last section, we briefly look at computing certain hyper-volumes of revolution.
Herein, we are particularly interested in volumes of revolution generated by revolving
the graph of the nonnegative function

y=f=(1-2"% —1<x<I

about an axis. The graph of this function can be viewed as a curve in the xy-plane
embedded in R”. Revolving this graph about an axis spawns a new axis orthogonal
to the xy-plane [5]. For the detailed derivation of the formulas for the volumes and
hypersurface areas of revolution about either the x- or the y -axis in dimensions greater
than 3, see [1,5]. The volumes of revolution about the x-axis and the y-axis are given
by

1 1
Vi(n, m) = 0,1 (1) / £ (0)dx and Vy(n, m) = a,_1(1) / X2 f(x)dx,
—1 -1
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respectively, where v,,(1) is the volume of the n-dimensional unit ball, and a, (1) is the
surface area of the n-dimensional unit sphere. The surface area a,(r) of S,(r) is given

by % = ’;’vn(r). Thus, we have

n—1

Ea ! 277 (1 + =y (L
r(1+24) Jo min— DI (1 + £) T (550

Indeed, in this special case, it is easy to show that V,(n, m) is identical to V;(n, m)—
this also can be deduced from the symmetry of the equation. In Table 3, we present
some values obtained for V,, and for comparison purposes, we give the corresponding
values of Vg (n, m) obtained from equation (2). Note that, for n = 2, the volumes and
volumes of revolution about the x-axis and y-axis are identical for a given m. Form = 1,
we obtain the volume of the n-sphere.

TABLE 3: Volumes of revolution for the functiony = (1 — xz’")ﬁ, —1 < x < 1 for different
values of m and n.

n m Ve Vi=V,
2 1 3.1416 3.1416
2 2 3.7081 3.7081
2 3 3.8552 3.8552
2 4 3.9138 3.9138
4 2 10.7995 6.9789
4 3 13.1287 7.6298
4 4 14.2005 7.9134
6 2 26.6975 8.1329
6 3 40.8018 9.1870
6 4 48.5768 9.6717

It is sometimes of interest to examine the ratios of volumes. From our volume ex-
pressions, we see that this would lead to examining the ratios of gamma functions. We
caution the reader that this has to be carried out carefully by choosing the appropriate
approximation for the gamma function in order to avoid contradictory results. For in-
stance, instead of using Stirling’s formula we utilized above, an extended version of

Stirling’s approximation, for example, I'(1 4 x) ~ «/ 2t s may prove to be
more appropriate.

Acknowledgment The authors would like to thank the referees and the editor Michael Jones for helpful sugges-
tions to improve the presentation of this article.
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Summary. Volumes of objects in higher dimensions are of interest in higher-dimensional geometry. In this note,
we give a sampling of some of the topics that are considered in this field. We first provide an alternative proof for
a formula for the volumes of generalized super-ellipsoids that was obtained by Dirichlet in the 19th century. Then
we employ a geometric Monte Carlo method that allows us to estimate hyper-volumes numerically. We then end
the presentation with a brief discussion on the volumes of revolution in higher dimensions.
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Summary. Visual proof of three arctangent identities involving arctan(v/2 — 1) and arctan(v/2 + 1).
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In a short paper [10], Verma and Keller suggested and found the solution to the fol-
lowing optimal design problem: Consider a heavy rope hanging vertically from a fixed
support (the ceiling) and stretched due to its own weight and that of an additional load
attached at the rope’s lower end. Assume in addition that the volume and length of the
unstretched rope are known. How should one taper the rope so that its elongation be-
comes smallest possible? The paper, which appeared in STAM Review some 30 years
ago under the headline “Classroom Notes in Applied Mathematics,” had the pedagog-
ical aim of showing how to solve a real world problem (in elasticity) using methods
from calculus of variations. In the present paper, we prove the optimality of the solu-
tion found in [10], something which is missing in the original paper. This is achieved
by reformulating the problem as a variational problem in standard form, unconstrained
and with fixed end-points. The paper uses ideas from calculus of variations, but reading
the optimality proof actually does not require any deep prior knowledge of the subject.
For the particularly interested readers, the ideas used in the optimality proof will be
examined further and put into their right context afterward.

The rest of the paper is organized as follows: In the next three sections we first give
the problem formulation, recall some facts from the calculus of variations, and then
reproduce the original solution from [10], using essentially the same notation as in that
paper, but a different coordinate system (for convenience alone). The subsequent two
sections cover the reformulation of the problem and its solution, including the proof
of optimality. The principles underlying the optimality proof is then discussed in a
separate section. The penultimate section briefly mentions two other solutions to the
problem. Finally, we make some concluding remarks concerning the didactic merits of
the problem and its solution.

Problem formulation

The unstretched rope is assumed to have length L, a fixed total volume V, and a uni-
form density p. The weight of the attached load is denoted W. The problem is essen-
tially one-dimensional, and it turns out to be convenient to choose a coordinate system
with the origin at the lower end of the rope and whose axis points vertically up to-
ward the ceiling, see Figure 1. Thus, x = 0 is (always) where the additional load is
attached to the rope and the ceiling is located at x = L when the rope is unstretched.
The unstretched rope (gravitational constant g = 0) is taken as reference state. Denote
by A(x) the cross-sectional area at x of the unstretched rope. Each positive function
A : [0, L] — R, corresponds to a possible design of the rope. (The shape of each cross-
section is not considered relevant for the model.) The volume of the unstretched rope
is a functional V[A] of the design A, and those designs which are admissible for the

Math. Mag. 91 (2018) 52-61. doi:10.1080/0025570X.2017.1404790 © Mathematical Association of America
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A A

Figure 1 The rope in its unstretched (reference-) state, left, and in the stretched equilib-
rium state, right.

minimum elongation problem satisfy

L
VIA] = / Ax)dx =V. (1)
0

When the load is applied (when g > 0), the rope is stretched, and the point originally at
x will be displaced by an amount y(x) relative to its initial position, and its coordinate at
equilibrium is consequently x + y(x). The displacement y(x) is a monotone increasing
function of x and y(L) corresponds to the total elongation of the rope.

For moderate displacements, Hooke’s law of elasticity applies. It states that the stress
at x, o (x), is proportional to the strain y'(x). The stress at x equals the combined weight
of the applied load and the mass of the part of the rope lying below x, divided by the
cross-section area at x. Hooke’s law therefore implies that

A(x)

where E is Young’s modulus of the material and g is the gravitational constant. Since
v(0) = 0, we find

* 1 X/ 4 /! /
J’(X)=/O EAG) |:W+pg/0 A" dx :| dx'.

The total elongation of the rope is

L 1 X
E[A] :=y(L) =/0 EAG) |:W —}—,Og/O A(x")dx :| dx’, 2)

and our task is to find a piecewise continuous function A : [0, L] — R, which min-
imizes the expression (2) and simultaneously satisfies the integral constraint (1). In
the calculus of variations such a problem is known as an isoperimetrical problem. The
above functional is, however, not written in the standard form. Before we do that, let
us recall some basic terminology and results from the calculus of variations.

Ey(x)=0(x) = L [ + pg/xA(x’)dx’] ,
0
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Euler’s equation and extremals

The standard problem' of the calculus of variations is to find a function y, which min-
imizes an integral (or functional) of the form

b
Tyl = / Fx, y(0), y' (1) dx,

where the function F = F(x, y, z), the Lagrangian, is a sufficiently smooth function
defined for points (x, y, z) in an open domain in R*. The minimum of the integral is
taken over all continuously differentiable functions y, defined on the interval [a, b], such
that each y satisfies the two conditions, (i) the end point conditions y(a) = « and y(b) =
B, where o and B are given real numbers, and (ii) the point (x, y(x), y'(x)) belongs to the
domain of F for all x € [a, b]. Such functions are said to be admissible for the problem
and the set of admissible functions is denoted .A.

Suppose that yg is a minimizer of the integral, i.e., yo € A and J[yo] < J[y] for all
y € A. Then yj satisfies the differential equation:

d oF

05y (6, Y0(x), ¥o(x)) =0, a<x<b, 3)

oF ,

a_y(xv YO(X), yO(x))
where dF /9y denotes the partial derivative dF/dz. This is Euler’s equation (or Euler-
Lagrange’s equation), and its proof can be found in any introduction to the calcu-
lus of variations. However, the result is so central to the subject that we prefer to
recall the proof here: We first make a “variation” of the minimizer y, by defining,
for any test function i € C} := {n € C'([a, b]) : n(a) = n(b) = 0}, a new function
Ve (x) = yo(x) + €h(x). This function meets the required end point-conditions (i) for
all real €, because h(a) = h(b) = 0, and so belongs to A when € is sufficiently close
to zero, so that condition (ii) is also satisfied. Now, since y, is a minimizer over A it is
certainly a minimizer over the subset of A consisting of the variations y.. Therefore,
the function € +— fab F(x,y0 + €h, y; + €h’) dx attains its minimum value at the interior
point € = 0, hence its derivative must vanish there. If we differentiate under the integral
sign and set € = 0, the well-known necessary condition for optimality is obtained:

b
/ Fy, (x)h(x) + Fy, (W (x)dx =0, forall h € C}. 4)

Here Fy, (x) = F,(x, yo(x), y5(x)) and Fy (x) = Fy(x, yo(x), Yo (x)) are the partial deriva-
tives dF/dy and 0F /9y, respectively, evaluated along the graph y = yo(x) of the mini-
mizer. Next, let us define 6 (x) = fax F,,(t)dt. Since F,, is continuous (being a composi-
tion of the continuous partial derivative F, with yo and y;, which are both continuous),
this anti-derivative is a continuously differentiable function. Using 6’ (x) = F,,(x), we
may integrate the first term in (4) by parts to rewrite the necessary condition as

b
/ {=0(x) + Fy (x) W (x)dx =0, forallheCl,

where the contribution from the boundary terms vanish because i(a) = h(b) = 0. We
now appeal to the following famous result by Paul du Bois-Reymond, whose proof
may be found in, e.g. Pars’ book [8, section 2.1, Lemma 2].

'n the older literature, standard problems are often referred to as “problems of the simplest kind in the calculus
of variations.”
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Lemma. Ifg: [a, b] — R is continuous and

b
/ g (x)dx =0,

a

for all h € C'([a, b]) with h(a) = h(b) = 0, then g(x) = C for all x € [a, b] for some
constant C.

The lemma implies that
—0(x) + Fyé(x) =C

for some constant C. Since 6 is differentiable and the right-hand side is constant, it
follows that the function Fy, is likewise differentiable. Differentiation on both sides of
the equality gives Euler’s equation (3), and the proof is complete.

This was the “sophisticated” proof of Euler’s equation. The “standard proof” is
slightly simpler, but comes at the price of an extra assumption: the minimizer y, needs
to be twice continuously differentiable, and not just continuously differentiable as all
the other members of A (and how do we know this?). It uses integration by parts in the
second term of the necessary condition (4) and appeals to the so-called “fundamental
lemma of the calculus of variations,” see, for instance, [6, Lecture 2].

Finally, we remark that any solution of Euler’s equation (3) is called an extremal
of the functional 7. This term is unfortunate, of course, since a solution of Euler’s
equation is not necessarily a minimizer, nor a maximizer, of J. An extremal need not
even belong to 4. So when we say something like “y is an extremal of the functional
J” we simply mean that y solves the corresponding Euler equation.

The original solution

The minimizer of £ in (2) subject to the constraint (1) was found in [10] by appealing
to Euler’s rule, which is the equivalent in the calculus of variations to the Lagrange
multiplier rule of ordinary calculus. Euler’s rule is a necessary condition for optimality
in isoperimetrical problems, see, e.g. Pars [8, section 6.5] or Gelfand and Fomin [3,
section 12.1]. For the present problem it states that if the design Ap minimizes the
elongation £[A] among all designs A satisfying the volume constraint (1), and if Ag is
not an extremal of V), then A is an extremal of the augmented functional,

E[A] = AVIA]

where A is the (Lagrange-)multiplier. Notice that } does not have any extremals.
Before attacking this problem, it was suggested in [10] to rewrite the above func-
tional in terms of a new dependent variable B defined by

B(x) = w + /XA(x/)dx/. 5
24 0

Thus, B(x) may be interpreted as 1/pg times the weight of the attached load together
with the weight of the part of the rope which lies below the level x in the reference state.

Using that B’ = A gives £[A] = (pg/E) fOL B(x)/B’(x) dx. Therefore, if we define

L
E[B] :=/ F(B,B)dx where F(B,B)=B/B, (6)
0
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the problem becomes that of determining the extremals of the functional (pg/E YE[B] —
AV[B'], that is, finding the solutions of Euler’s equation:

o d B
=22 2 (282 ) =0
0B dxoB )\ EB

Differentiation and simplification yields the following second-order differential
equation,

BB" = (B').

After one integration this becomes B = KB, for some real constant K, and after another
integration, B(x) = B(0)eX*. The definition (5) implies B(0) = W/pg and differentia-
tion, A = B, gives A(x) = (KW/pg)eX*. The constant K is determined using (1). The
result is the admissible extremal:

w Kox
Ag(x) = Ko—e™, 0<x<L, @)
194

where Ky = L~! In(1 4+ V pg/W).

This is the only extremal that satisfies the volume constraint, and is therefore tacitly
assumed in [10] to be the minimizer of the elongation. This may seem plausible, from
a practical point of view. However, from the mathematical point of view the situation
is unsatisfactory until optimality has been proved (or disproved). Our main aim is to
provide the missing proof of optimality (in fact we propose three). However, textbooks
on calculus of variations usually do not state nor prove any sufficient conditions for
(local or global) optimality of extremals of isoperimetrical problems, so there is no
off-the-shelf method to help us here. Instead we achieved our goal by observing that
the problem can be reformulated as a standard problem in the calculus of variations.
We thereby avoid the isoperimetrical constraint and the use of Euler’s rule all together,
and are able to give a simple proof of the optimality of Ay.

Before proceeding let us mention that in [10] it was observed that the stress cor-
responding to Ag(x) is constant, o (x) = pg/Kp for O < x < L. This observation was
stated in the very last couple of lines and was not used. In structural optimization, a
uniform stress distribution is usually taken as a sign that an admissible design is op-
timal.? That such a condition is sufficient for optimality may very well be true. It is,
however, far from obvious.

The reformulation

Our new approach to the minimum elongation problem is again based on the intro-
duction of the new dependent variable B in (5) and minimization of the elongation
functional (pg/E )é [B]. But instead of using the condition (1) as a constraint, we ob-
serve that it implies the end point conditions B(0) = W/pgand B(L) =V + W/pg on
the admissible functions B. This was, curiously enough, overlooked in [10].

The problem is now a standard problem in the calculus of variations, whose precise
formulation we summarize here: Let D! denote the space of piecewise continuously
differentiable functions defined on the interval [0, L]. We say that a function f is piece-
wise differentiable on the interval [a, b] if f is continuous on the interval and if there
exists a positive integer N and numbers a = xg < x; < --- < xy—1 < xy = b, all de-
pendent on f, such that f is continuously differentiable on each of the subintervals

2 So the present author was told by a colleague at the Faculty of Engineering.
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[xi—1,x],i=1,..., N, with finite one-sided derivatives at the end points. Set
A={BeD"|Bx) >0,B(x)>0 forx € [0, L] and B(0) = «, B(L) = B},

where « = W/pg and 8 =V + W/pg. Notice that our choice of 4 permits designs
A = B’ which have jump discontinuities. We want to find By € .4 which solves

gleiil E[B], (®)

where £ is the functional defined in (6). We have dropped the inessential factor pg/E.

The optimality proof

Here comes the very short but complete solution to the reformulated problem (8) which
implies that Ag in (7) is the correct solution of the minimum elongation problem.

First, for any number K > 0 (whose exact value K, will be chosen at the end of the
proof), observe that the integral

L

K[B] := K2 / 2K — B'/Bdx = K~*[ 2Kx — In(B(x)) 15
0

depends only on the value of B at the interval end points, and therefore has the same

value for all B € A. It follows that the functional

LkB B

& T g~ 2dx 9)

. 1
T1B] = B] - KIBl = <5

0
has the same minimizer in A as €. A special case of the arithmetic-geometric inequality
states that a +a~! > 2, a > 0, where equality holds if and only if a = 1. This implies
that the integrand of Z is nonnegative, and therefore Z[B] > 0 for all B € A. If we can
find By € A such that Z[Bg] = 0, then By is a minimizer of Z, and therefore a solution
of (8). But Z[By] = 0 is possible if and only if the integrand of (9) is identically zero
on the interval [0, L]. By the equality case in the arithmetic-geometric inequality, B, =
KBy throughout the interval, and therefore By(x) = Bo(0)eX*. The end point conditions
B(0) = o and B(L) = B are satisfied if we take K to be Ky = L~! In(8/a). It follows
that

Bo(x) = aeX* e A (10)

is the unique solution of (8) and differentiation, Ay = By, leads to the optimal design
solution (7).

How to find the optimality proof

As shown in the previous section, a logically complete solution of (8) may be given
without first appealing to Euler’s equation. Such a solution depends, however, upon
guessing the form of the integral X correctly, which may not always be easy. It is
therefore interesting to see how an algorithm, due to Hilbert,? allows us to find /X if we
know sufficiently many of the extremals of the problem, and thus prove optimality.

3 Hilbert’s method appeared in his famous lecture delivered at the International Congress of Mathematicians in
Paris, 1900. A written version of the lecture was published as two papers (in German) in two different German
journals. An English translation [4], where precise references to the two German originals may also be found, was
published by the American Mathematical Society in 1902.



58 MATHEMATICS MAGAZINE

We first determine all the extremals of (8). Our derivation, which is inspired by sim-
ilar ones found in Bliss [1], has the advantage that we immediately get that minimizers
are smooth, and not merely piecewise smooth, functions. Assume By is a solution to
the minimization problem. The necessary condition for optimality in (4), which can be
extended to piecewise differentiable functions, states that fOL Fg,h + FB(r)h’ dx = 0 for
allh € D} := {n € D'| n(0) = n(L) = 0}. Here D} has replaced C, as our set of test
functions. Since F = B/B’, the necessary condition becomes

L / L 2
h  Boh B hy’
0=/ —/—0—2dx=/ —02<——> dx
0 BO B6 0 86 BO
forall h e D(l). Since By > 0 on [0, L] we see that every member 1 € D(l) can be writ-
ten in the form n = —h/B, for some h € D}. It follows that fOL(Bo /By)*n’ dx = 0 for
all such 7. The lemma of du Bois-Reymond, stated earlier, implies that (By/B})* is a
constant throughout the interval, that is, By = KBy on [0, L] for some number K > 0.
Since By is continuous, so is By, hence By is continuously differentiable and it imme-

diately follows that the minimizer of the functional has to be found among functions
of the form

Bo(x) = Ce&*, (11)

where C > 0 and K > 0. When the endpoint conditions are taken into account, we find
that the admissible extremal (i.e., the one in \A) is precisely the function (10).

The functional K[B], used in the optimality proof, is known as Hilbert’s invariant
integral, since its value is the same for all B € A. We are now going to indicate, briefly,
how the extremals of the elongation functional are used in the construction of this in-
tegral. The method is general and may be applied to any Lagrangian F.

First, we fix the value of K to be Ky = L™! In(8/«), see (10), and consider the subset
of the extremals (11) given by

B(x;C) = CeX*,  C > 0. (12)

This subset is called a field of extremals because it has the following properties: It is
a one-parameter family of functions. Each member of the family is an extremal of the
functional, and through each point (x, B) of the domain 0 < x < L and B > 0 there
passes exactly one such extremal. It is easy to verify that each member of the field
satisfies a first-order differential equation of the form

Y = p(x, y(x)).

In fact, each member of the field (12) satisfies the linear first-order, constant coefficient
differential equation B’ = KB, that is, p(x, B) = K;B.
Hilbert’s invariant integral K is defined by

L
K[B] = / M(x, B(x)) + B'(x)N(x, B(x)) dx, (13)
0

where the functions M, N are defined in terms of the Lagrangian F (B, B') as
M(x, B) = F(B, p(x, B)) — p(x, B)Fp (B, p(x, B))
and
N(x, B) = Fg (B, p(x, B)).

It can be shown that for this choice of M and N, the integrand of X’ becomes an exact
differential, see Mesterton-Gibbons [6, Lecture 12] or any of the other textbooks in
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the references. This means that there exists a function U = U (x, B) such that for any
function y = y(x),

d
EU(X’ y(x)) = M(x, y(x)) + ¥ ()N (x, y(x)).

As a consequence K[B] = U(L, B(L)) — U(0, B(0)), which depends only on the end
point values of B. This is the desired invariance.

For the Lagrangian F = B/B’, we have Fy = —B/B’, and, since p(x, B) = KB, the
above definitions give

—B 2B 2

B
M == - 7B = = —,
B PGB T e T K

and
—-B -1
N = = .
p(-xa B)2 KOBZ

If these expressions are substituted into (13), we recover the invariant integral of the
optimality proof. Solving the system dU/dx = M, dU/dB = N leads to U(x, B) =
Ky 2(2Kox — In(B)) (plus a constant, chosen here to be zero), which we also recognize
from the optimality proof. Notice that such an explicit expression for U is not really
needed once the invariance has been established by other means. All that is needed to
complete the optimality proof are M and N.

Finally, notice that the admissible extremal By found in (10) is one of the extremals
in the field (12) and that [By] = & [Bo]. The latter fact is easily checked by substi-
tuting the relation B; = p(x, By) into the definition of /C. Now, if the integrand of the
functional Z = € — K is nonnegative,4 as is the case when F = B/B’, then Z[B] > 0
for all admissible B. The functional Z is therefore clearly minimized by By. The invari-
ance of KC now ensures the success of our method because it implies that a minimizer
of Z is also a minimizer of &.

Alternative solutions

The functional fOL F (B, B") dx is written in standard from, but the actual Lagrangian
F(B, B') = B/B' is far from common. It does not occur in any of the examples or prob-
lems in such classical texts on the calculus of variations as Elsgolc [2], Pars [8], Gelfand
and Fomin [3], and Sagan [9] nor in the modern introductions to the subject Kot [5] and
Mesterton-Gibbons [6]. Placing two conditions, B > 0 and B’ > 0, on the admissible
functions in B € A is not common either. However, the special form of F allows us to
come up with two alternative (and opportunistic) solutions of the minimum elongation
problem.

The first alternative solution uses that members of A are positive and strictly in-
creasing. The only differential calculus rule which involves a quotient with a derivative
in the denominator is the one for differentiation of the inverse of a function. This sug-
gests that we apply the substitution x = u(t) := B~'(¢) in the integral which defines E.
It then turns out that the problem (8) is equivalent to the minimization of the integral

B
/ (1) dt

4 This integrand is known as Weierstrass’ excess function.
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over the set of piecewise differentiable functions u with u > 0 and &’ > 0 on the interval
[, B] which satisfy the end point-conditions u(c«) = 0 and u(8) = L. The admissible
extremal of this problem is

In(t/a)
In(B/a)’

whose inverse coincides with By in (10). The optimality of u is easily established by
direct verification, that is, by showing the identity faﬁ tu? dt — faﬁ tu} dt = ff t(u —
7 )? dt, for all admissible u, and use that the right-hand side is nonnegative. We leave
the details, including those in the optimality proof, to the student as a means for further
study. One only needs Euler’s equation to do this.

The second alternative solution of (8) is based on the ansatz B(x) = « exp(u(x))
which transforms the problem into minimization of the integral Ew) = fOL 1/u (x)dx
over piecewise differentiable functions satisfying u’ > 0, u(0) =0, and u(L) =

u(t) = L

In(8/a) =: y.If we use that y = fOL /' (x) dx, it follows from Schwarz’ inequality that

y&(u) > L?. Equality occurs if and only if #' and 1/u’ are linearly dependent, which
implies that «’ is constant. This allows us to determine the optimal u and leads to the
solution (10). (Observe that the stress in the rope is o (x) = pg/u’(x), so in this for-
mulation of the problem, constancy of stress turns out to imply the optimality of an
admissible design. Compare this to the remark made at the end of our presentation of
the original solution.) Once more we leave the details to the reader as an instructive
exercise.

We close this section with the remark that the minimum elongation problem can be
generalized to ropes with variable density and nonlinear stress-strain relations, see [7].
For nonconstant density two distinct elongation problems emerges; one with a con-
stant mass-constraint and another with a constant volume-constraint. The above ansatz
can be used to simplify the analysis of the first of these two problems considerably
(compared to [7].) The second problem seems to be much harder.

Concluding remarks

The purpose of the present paper is pedagogical and it has been written with the begin-
ning student of the calculus of variations in mind. For this reason we did not hesitate
to give the original derivation as well as three new complete solutions of the minimum
elongation problem. The minimum elongation problem has some nice features: It in-
volves, as already mentioned, a variational problem in standard form with an uncom-
mon Lagrangian function. Moreover, the (first) optimality proof, which is basically an
application of Weierstrass’ sufficient condition for a strong relative minimum, is simple
but not trivial, as a direct verification of the optimality of B, does not seem possible,
or at least not easy to find. Finally, the methods of the third solution seem capable of
generalization to more complicated minimum elongation problems.

I have been teaching a course on calculus of variations at my home university for
a couple of years now. In the latest realization of this course I decided to hand out a
set of journal articles for the students to read and present orally. Most of these papers
consider relatively simple real-world applications formulated as variational problems
and the solutions are based on methods taught in the course. The inspiring paper by
Verma and Keller was one of these articles. It is my hope that the present paper may
serve future students and teachers of the calculus of variations as [10] has served me
and my pupils.
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The polyomino, a term coined by Solomon Golomb in 1953-1954 [6] and later pop-
ularized by Martin Gardner in one of his Scientific American columns of 1960 [5],
has long been a popular topic in recreational mathematics, and has even made its way
into pop culture through games like Tetris and Blokus. A polyomino is a finite col-
lection of edge-connected, equal-sized squares in the plane. Problems often involve
tiling the entire plane, or regions of it, using certain sets of polyominoes [6-8]. Per-
haps the most famous theorem involving polyominoes is Solomon Golomb’s tromino
theorem, which also happens to be an incredibly elegant example of inductive reason-
ing. A tromino is a polyomino consisting of just three squares. Golomb’s theorem, first
proved in [5], states that any “chess board” of size 2V x 2V with a single square re-
moved can be completely tiled by trominoes of the type shown in Figure 1,which we
will call

Figure 1 The L-tromino.

an L-tromino. While this fact may not be entirely obvious at first glance, the proof is so
simple and beautiful it bears repeating. The case N = 0 is trivial, since after removing
the one square there is nothing to cover. Now consider a 2V x 2" board for N > 1, and
divide the board into a 2 x 2 array of 2V~! x 2¥~! boards as shown in Figure 2(a).
Any square removed from the board must fall in one of the four smaller 2V~1 x 2V-!
boards. Without loss of generality, we suppose it is the board on the bottom left. Now
place an L-tromino as shown in Figure 2(b) and complete the proof by tiling each of
the 2V=! x 2¥~! boards, now with one tile missing from each, by induction.

In 1985-1986, Chu and Johnsonbaugh [3.4] generalized this result to show that as
long as 3 does not divide evenly into K and K 5 35, then if you remove a square from a
K x K board, the resulting board can always be tiled by L-trominoes. They also charac-
terized which rectangular boards can be so tiled. They called boards with tiles removed
deficient, and specifically, boards with one tile removed 1-deficient. Additionally, we
shall say that if a board (deficient or otherwise) is tilable by L-trominoes then it is
L-tilable.

Math. Mag. 91 (2018) 62-69. doi:10.1080/0025570X.2017.1404796 © Mathematical Association of America
MSC: Primary 52C22, Secondary 05B45, 05B50
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(a) (b)

Figure 2 (a) A 2V x 2" board divided into 2 x 2 array of 2¥=! x 2%~ boards. (b) After
a square has been removed from the bottom-left 2V=! x 2¥=! board, a tromino is placed
such that a square is taken from each of the other three 2¥=! x 2V=! boards. Each of the
smaller boards may then be covered by basic trominoes by induction.

Figure 3 The solid L-tromino.

In 2008, Starr went on to study the problem in three dimensions, first showing that
1-deficient cubical boards of edge length 2V for any N are tilable by solid L-trominoes
(Figure 3) [10], and then generalizing the result to show that 1-deficient cubical boards
of arbitrary edge length K with K = 1(mod 3) are L-tilable [9].

In this paper, we show that any 1-deficient rectangular solid of dimensions K x L X
M, where KLM = 1(mod 3) and K, L, M > 1, is L-tilable. The proof is very simple and
as a corollary gives a simplified proof of Starr’s result for 1-deficient cubical boards. In
addition, we extend the result to all higher dimensions showing that one may always tile
a 1-deficient Ky X --- x Ky board with Kj - - - Ky = 1(mod 3), N > 3, where at least
three of the K; > 1.

The only other tromino (solid or otherwise), in addition to the L-tromino, is
the straight tromino. To complete our study, we show that, in contrast to the case of
the L-tromino, it is never possible to cover a 1-deficient K; X - - - x Ky board, where
K| --- Ky = 1(mod 3), and at least one of the K; > 1, with straight trominoes if we are
free to choose the square/cube/hypercube to be removed.

L-trominoes in 3D

In what follows we shall refer to a generic 1-deficient two-dimensional board of
size K x L as a (K x L) — 1 board and a 1-deficient three-dimensional board of size
K xLxMasa(KxLxM)—1board. Moreover, a K x L board has K rows and L
columns, while a K x L x M board has K levels, L rows, and M columns. We say that a
board of size (K x L) — 1 or (K x L x M) — 1is generically L-tilable if it is L-tilable
regardless of the square or cube removed.



64 MATHEMATICS MAGAZINE

In the arguments that follow, note that by taking slices in each of the different axis-
aligned directions, we may freely regard a K x L x M board as the union of K boards
of size L x M, L boards of size K x M, or M boards of size K x L.

Lemma 1. If K, L, M > 1 then if a two-dimensional board of size (KL x M) — 1 is
generically L-tilable then so is a three-dimensional (K x L x M) — 1 board.

Proof. For illustration purposes consider a 2 x 2 x 4 board. We picture this board as
two 2 x 4 boards, one on “top” and one on the “bottom,” as in Figure 4. If we slide the

Top
T1

5

Bl

B2
Bottom|

Figure 4 A2 x 2 x 4 board pictured as two 2 x 4 boards, one on “top” and one on the
“bottom.”

board on the bottom to the left, flip it horizontally, and glue the edges together we
get a 2 x 8 board as pictured in Figure 5. In the 2 x 8 board note that an L-tromino

Top
Bl Tl

B2 15

Bottom

Figure 5 After sliding the “bottom” board in Figure 4 to the left, flipping horizontally,
and gluing the adjacent edges one is left with the above 2 x 8 board.

that crosses the middle vertical line corresponds to an L-tromino that extends from
the top to the bottom in the left-most column in the original 3D board. It easily follows
that any tiling by L-trominoes of a (2 x 8) — 1 board corresponds to an analogous tiling
of the associated (2 x 2 x 4) — 1 board. Hence, if a (2 x 8) — 1 board is generically
tilable thensoisa (2 x 2 x 4) — 1 board. If we instead had a5 x 2 x 4 board, say, then
we would think of this board as 5 boards of size 2 x 4 and analogously lay them out
right to left, starting with the top one on the right, and would then flip every other one
horizontally, beginning with the second from the top. In the resultant 2 x 20 board,
if we number the vertical lines in left to right order with the numbers 1 through 21,
then any L-tromino that crosses vertical line 1 + 4 for 1 < j < 5 corresponds to an
L-tromino that would have spanned vertically adjacent boards in the left-most column.
Laying out the K boards of size L x M in the statement of the lemma in analogous
fashion, we see that any L-tiling of an (L x KM) — 1 board corresponds to L-tiling of
a (K x L x M) — 1 board and the lemma is proved. |

We will also need the following result that readily follows from [1].

Theorem 1 (Ash and Golomb [1]). Any (K x L) — 1 board with KL = 1(mod 3) and
K, L > 1is L-tilable as long as K, L ¢ {2, 5}.
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Theorem 2. A (K x L x M)-1 board, where KLM = 1(mod 3) and K,L,M > 1 is
always L-tilable.

Proof. Suppose we have a (K x L x M) — 1 board as in the statement of the theorem.
Note that we cannot have all of K, L, M € {2, 5} since then KLM = 2(mod 3). Without
loss of generality we may assume that M ¢ {2, 5}. In addition, it must be that KL ¢
{2, 5}. It follows by Theorem 1 that any board of size (KL x M) — 1 is L-tilable and
by Lemma 1 that our (K x L x M)-1 board is L-tilable. The theorem follows. |

L-trominoes in higher dimensions
Let us first consider the 4D case, and for illustrative purposes, considera2 x 2 x 2 x 5

board. First, we consider a 2 x 2 x 5 board, which we think of as two parallel 2 x 5
boards, one on “top” and one on “bottom.” See Figure 6. To get the 2 x 2 x 2 x 5

Top

| | | | Bottom‘

Figure 6 A 2 x 2 x 5 board, thought of as two parallel 2 x 5 boards, one on “top” and
one on “bottom.”

board, take two identical copies of the two parallel 2 x 5 boards and consider each cube
(which we are picturing as squares) on one of the 2 x 2 x 5 boards to be connected to
the identically positioned cube in the other 2 x 2 x 5 board. In other words, each square
in the top 2 x 5 board is thought of as being connected to each square on the associated
top 2 x 5 board, and analogously for the bottom squares. If we reorder the component
2 x 5 boards of the top 2 x 2 x 5 board (so that the former “top” 2 x 5 board is now
on the bottom) and slide this reordered 2 x 2 x 5 board on top of the other one, we get
a4 x 2 x 5 board, as in Figure 7.

This board is different from the 2 x 2 x 2 x 5 4D board in some ways, and in some
ways similar. For example, the corresponding squares on the associated “top” layers are
connected, but those on the associated bottom layers are not. However, this embedding
of the 4D 2 x 2 x 2 x 5 board onto the 3D 4 x 2 x 5 board gives rise to a bijective
mapping ¢ of cells where

@G, j k1) =G, jk+ 1= 1) —2k), )
or in a form that is easier to generalize to boards with other dimensions:

o Gk, ifl =1,
¢(”J’k’l)_:(i,j,5—k), ifl=2. @

The cell ¢ with coordinates (i, j, k, [) is in the ith row, jth column, kth level, and /th
hyper-layer. The map ¢ has the key properties:

(i) if cells ¢, ¢’ are adjacent in the 4 x 2 x 5 board, then ¢ ' (c), ¢~!(c’) are adja-
centin the 2 x 2 x 2 x 5 board, and
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Top
Bottom
| | | |Bottom|
Top2 X 2x5
Top | ' l | | ' | Top l
Top
| | | [Bott0m|
‘ | | |Bottom|

Bottom2 X 2 X 5

Figure 7 On the left a 2 x 2 x 2 x 5 board thought of as two parallel 2 x 2 x 5 boards
with squares in corresponding locations thought of as being connected to one another.
If we reorder the boards of the “top” 2 x 2 x 5 board and slide them over the “bottom”
2 x 2 x 5board, we getan embedding ¢ of the2 x 2 x 2 x 5board intoa4 x 2 x 5 board.
If L denotes three cells that comprise an L-tromino in the 4 x 2 x 5 board then ¢=!(L) is
also an L-tromino in the 2 x 2 x 2 x 5 board.

(i) if cells ¢, ¢/, ¢ are not collinear in the 4 x 2 x 5 board then ¢~'(c), ¢~ (c'),
¢~ 1(c") are not collinear in the 2 x 2 x 2 x 5 board.

Hence, the inverse image of cells forming an L-tromino on the 4 x 2 x 5 board form
an L-tromino on the 2 x 2 x 2 x 5 board. As a result, tiling of the 4 x 2 x 5 board
by L-trominoes gives rise, under the bijection ¢!, to a tiling of the 2 x 2 x 2 x 5
board. There was nothing special about our choice of a 2 x 2 x 2 x 5 board. For a
generic L X K x J x I board, in other words where i € {1,...,I},je{l...,J},ke
{1,...,K},and ! € {1, ..., L}, the analog of equation (2) is

G gk + = DK), if s odd,
¢(l’f’k’l)—{(i,j,lK—k+1), if 1 is even. ®

Now ¢ is a bijection between the cells of an L x K x J x [ board and an LK x J x [
board. For odd values of the hyper-parameter /, the boards are layered from bottom to
top, while for even values of [ the boards are layered from top to bottom. As before,
the inverse image of cells forming an L-tromino on the LK x J x I board form an L-
tromino on the L x K x J x I board. Hence, Theorem 2 immediately gives way to the
analogous proof for 4D boards.

More generally, for a board of dimensions Ky X --- x K;, N > 4, and cell with
generic coordinates ¢ = (i, ..., iy), the embedding ¢ will be a composition of em-
beddings ¢4 o - - - o ¢y Where

. . G, iv—a, iv—t + (v — DEy—y), if iy is odd,
(PN(“’ T ZN) - (i], ey iN—Z, iNKN—l — iN—l + 1), if iN is even. (4)
¢y then embeds the Ky x --- x K| board bijectively onto the associated KyKy_1 X
Ky_2 x --- x K; board, and preserves L-trominoes under ¢,, I
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The composition ¢ = ¢4 o - - - o ¢y thus is a bijective embedding of the Ky x - - - x
K, board onto a (Ky - - - K3) x K> x K board that preserves L-trominoes under ¢~".
Hence, Theorem 2 yields the following result.

Theorem 3. A (K| X --- X Ky)-1 board, where K, - - - Ky = 1(mod 3), for N > 3 and
some three of the K; > 1, is always L-tilable.

Tiling with straight trominoes
It has often been noted, for example, in [7,8], that the standard 8 x 8 chessboard can-

not be tiled by straight trominoes if an arbitrary square is removed. The argument fol-
lows by 3-coloring the chessboard as in Figure 8. For clarity of exposition, we have

11210112 1
2|10(1(2]|0(1]2]|0
1 2m1 2m1 2
o|1(2(o0o|1(2|0(1
2|10(1(2]|0(|1]2]|0
1(2Q40Q1 2@1 2
o|j1f(2(o|1 (2|01
2101201 ]2]|0

Figure 8 3-coloring of a standard 8 x 8 chessboard. There is one more square labeled
“0” than “1” or “2”. A straight tromino necessarily covers squares with each of the three
numbers. Considering symmetries we then easily see that removing any square other than
the ones highlighted results in a board that cannot be covered by straight trominoes.

chosen to use the numbers 0, 1, and 2 to designate the three colors. The 3-coloring is
performed by proceeding in diagonal bands starting at the bottom left. The reason we
begin with a 2 will become apparent somewhat later; for the time being, take this to be
an arbitrary choice. Note that any straight tromino necessarily covers a tile of each of
the three colors. Since the total number of 0’s is one more than the total number of 1’s
or 2’s, if we remove a square numbered 1 or 2, we obviously cannot tile the remainder
of the board with straight trominoes. Symmetry arguments allow us to rule out tiling
with straight trominoes except in the case of the highlighted squares. Though in what
follows we shall not care about such exceptional cases that may be tilable, it is worth
noting that removal of such tiles does indeed enable a tiling, as shown in Figure 9.

An analogous impossibility of tiling argument shows that any rectangular board
of dimension K x L with KL = 1(mod 3), and one of K, L > 1 cannot be tiled with
straight trominoes, regardless of square removed. We again 3-color the board in di-
agonal bands, note that there necessarily are more of one color than another (since
3 does not divide evenly into KL), and make sure to remove a square of the less col-
ored variety.

Interestingly, such a diagonal coloring is also possible and leads to the same conclu-
sion in three and all higher dimensions. Figure 10 demonstrates such a coloring in 3D,
in the case of a4 x 4 x 4 board. We now reveal the method to our coloring. In any di-
mension, let the cell at location (iy, . . ., iy) be colored with color i; + - - - 4+ iy(mod 3).
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It is immediate that any straight tromino covers a cell of each color, and moreover that
removing a cell of a least used color necessarily results in an uncoverable board.

Figure 9 Tiling the standard 8 x 8 chessboard with trominoes after one of the highlighted
squares from Figure 8 has been removed.

oj1(21]0 210112
21012 1121071
1{2])0]|1 0j112)0
o11121]0 210112
Level 4 (Top) Level 3

1{2(0]1 0|1]12]0
01210 210112
210112 112]0]1
L2019 4 01112)0

Level 2 Level 1 (Bottom)

Figure 10 Three coloring of a generic 3D board as exemplified on a 4 x 4 x 4 board.

Hence, we can state the following theorem.

Theorem 4. A (K; x --- X Ky) — 1 board, where K; - - - Ky = 1(mod 3), and at least
one of the K; > 1, is never generically tilable by straight trominoes (in other words,
tilable regardless of the cell removed).

In fact, using a K-coloring rather than a 3-coloring, i.e., coloring cell (iy, ..., ix)
with color iy + - - - + iy(mod K), we see that the conclusion of Theorem 4 remains
true for more than just trominoes.

Theorem 5. A (K| x --- x Ky) — 1 board, where K; - - - Ky = 1(mod K), and at least
one of the K; > 1, is never generically tilable by straight polyominoes of length K > 2
(in other words, tilable regardless of the cell removed).

Concluding remarks

In this paper, we have presented an exhaustive study of covering 1-deficient boards
with L-shaped and straight trominoes. It is natural to next study tiling 2-deficient boards
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with L-trominoes. Ash and Golomb [1] initiated such a study for rectangles in the plane,
while Starr [9] studied these problems for the case of 3D cubical boards. We conjecture
that for any K, it is always possible to L-tile a K-deficient K} x --- x Ky board, with
all K; > 1 and K, - - - Ky = 1(mod 3), as long as N is sufficiently large.

Theorem 5 can clearly be extended to show that tiling K-deficient boards is not, in
general, possible for straight trominoes. However, if we remove a cell of the necessary
color so that an equal number of cells of each color remain regardless of what symmetry
operation is performed on the board, do we always get a board that is tilable by straight
trominoes?

Finally, in [2] it is shown that one can tile (3" x 3¥) — 1 boards with three spe-
cially chosen tetrominoes and (4" x 4V) — 1 boards with three specially chosen pen-
tominoes. Can these same families of tetrominoes and pentominoes tile more general
1-deficient boards in two, three, or possibly higher dimensions?

Acknowledgments The authors gratefully acknowledge the anonymous referees, one for suggesting a substantial
simplification of our main argument, and the other for helping them improve the presentation.
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Proof Without Words: Products of
Odd Squares and Triangular Numbers
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Write 7, = 1 + - - - 4 n for the nth triangular number.
Theorem. (2k + 1)?- T, = Toopy 1k — Ti forn, k € N.

Proof.
Eg,fork=2,n=2: Eg,fork=1,n=3:
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52. T, =T — To. 32.T3=T—T). [ ]

See [1] for another visual approach to this result.

Summary. We visually demonstrate an identity equating the product of an odd number squared and a triangular
number to a difference of triangular numbers.
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Proposals

To be considered for publication, solutions should be received by July 1, 2018.

2036. Proposed by Dan Stefan Marinescu, Hunedoara City and Leonard Giugiuc,
Drobeta Turnu-Severin, Romania.

Let a and b be real numbers with a < b. Let f : [a, b] — R be a continuous function
such that f(zx + (1 — t)y) < max{f(x), f(y)} forall x,y € [a, b] and ¢ € [0, 1]. Prove
that if f(a) = 0 and fab f(x)dx = Othen fub f(x)g(x)dx > 0 for all increasing functions
g:la,b] - R.

2037. Proposed by loana Mihdild, Cal Poly Pomona, Pomona, CA.

A point D lies on the hypothenuse BC of a right triangle AABC so that AB = BD. Let
P be the point on the circumcircle of AADC such that ZAPB is aright angle, and let L
be the midpoint of AD. Show that PC is perpendicular to PL.

2038. Proposed by Eugéne Delacroix, Lycée Thérese d’Avila, France and Su Pernu
Mero, Valenciana GTO, Mexico.

Given any real-valued random variable X, let A, Aj», Az, A2y be independent random
variables that have the same distribution as X, and let
X = minmax A;; = min{max{A;, A2}, max{A;;, A»}}.
i
(Although X does not directly depend on X but rather on the variables A;;, its

probability distribution is uniquely determined by that of X.) Define a sequence
{Xo, X1, ..., Xy, ...} recursively by Xp = X and X,.; = X,. Prove that, as n — oo,

Math. Mag. 91 (2018) 71-77. doi:10.1080/0025570X.2018.1411650 © Mathematical Association of
America
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X, tends in distribution to a discrete random variable Z taking at most two values.
Characterize the distribution of Z in terms of the distribution of X.

2039. Proposed by Baris Burcin DEMIR, Ali Naili Erdem Anatolian High School,
Ankara, Turkey.

Given a triangle AABC, let M be the locus of all midpoints P of segments DE that di-
vide AABC into equivalent (i.e., equal-area) parts, where both D and E lie on some side
(or possibly a vertex) of AABC. Compute the ratio of the area of the region enclosed
by M to the area of AABC.

2040. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Fix a positive integer n. Let A be an n x n complex matrix such that A" = 0. For any
complex number z # 0 and positive integer m, prove that there exists a matrix B such
that B” = 0 and A 4 "I = (B + zI)™, where I denotes the n x n identity matrix.

Quickies

1077. Proposed by Julien Sorel, Piatra Neamt, PNI, Romania.

Find all integers k such that 0 < k < 100 and the binomial coefficient (gk9 ) is not divis-
ible by 3.

1078. Proposed by Greg Oman, University of Colorado, Colorado Springs, CO.
Let €2 be an uncountable well-ordered set such that, for all @ € €2, the set
Qo ={e: B <a}

of predecessors of « is countable. (€2 is order-isomorphic to the first uncountable or-
dinal w;.) We will call any collection (x, : o € €2) of real numbers indexed by Q2 an
Q-sequence. We say that an Q2-sequence (xy) converges to the real number r if given
a positive number € there exists o € €2 such that |xg — 7| < € for all 8 € Q such that
B > «, and that it is eventually equal to the constant r if the preceding property holds
for € = 0. Is there a convergent 2-sequence that is not eventually constant?

Solutions

Sums of positive and negative numbers in an open set February 2017

2011. Proposed by Souvik Dey (M. Math student), Indian Statistical Institute, Kolkata,
India.

Let S be an open subset of the set R of real numbers such that S contains at least one
positive number and at least one negative number. Show that every real number can be
written as a finite sum of (not necessarily distinct) elements of S.

Solution by Pedro Acosta (student), West Morris Mendham High School, Mendham,
NJ.

The proof will only assume that S contains at least one negative number as well as
some open neigborhood of a positive number. Let T be the set of all finite sums of
elements of S. By hypothesis there are positive real numbers x, y, § such that —y € S
and S includes the open interval I = (x — 8, x + §). Since Q7 is dense in R™, there are
positive integers m, n such that |x/y — n/m| < §/y, hence |mx — ny| < mé. It follows
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that the open interval 1, ,, :== (mx — ny — m8, mx — ny + mé) contains 0. It is clear that
In.n = ml — ny is precisely the set of sums of m elements taken from I and n times the
element —y, and moreover 7 includes all such sums. Given any z € R, there is some
positive integer k such that z/k € I, ,; hence, z = k(z/k) = z/k+ z/k+---+z/k e T,
since T is obviously closed under addition.

Also solved by Ulrich Abel (Germany), Elton Bojaxhiu (Albania) & Enkel Hysnelaj (Australia), Paul Bud-
ney, John Christopher, Timothey V. Craine, Charles Degenkolb, Robert L. Doucette, Gregory Dresden, Joseph
DiMuro, Dmitry Fleischman, Isaac Garfinkle (student) Rafe Jones, Abhay Goel, Russell A. Gordon, Tom Jager,
Kelly Jahns, Reiner Martin (Germany), Missouri State University Problem Solving Group, Northwestern Univer-
sity Math Problem Solving Group, Eugene A. Herman, Edward Schmeichel, Skidmore College Problem Group,
Philip Straffin, John Tolle, Edward T. White, Stuart V. Witt, and the proposer.

A family of integrals with value /8 February 2017

2012. Proposed by D. M. Bdtinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzdu, Ro-
mania.

Let f be a continuous real-valued function on (0, co) satisfying the identity f(1/x) =
— f(x) for all x > 0. Given a > 0, calculate

/\/5+1 dx
vie (L4 +a/®)

Solution by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg (Germany).
Under the stated hypotheses on f, we show that

Ia) = /‘ﬁH dx o
V= s G +a®) T8

Using (V2 =1D2+1)=1, the change of variable x = 1/t shows that I(a) =
I(a—"). From the identity

1 + 1
14+ a# 14+a*

=1 forall u € R,

we obtain

Ia)+1@™") 1/ﬁ+1 dx  arctan(v2+ 1) —arctan(v2 — 1) 7
2 C2)a 142 2 8’

I(a) =

where the last equality follows from arctan 1 = 7 /4 and the identity

xX—y
+ xy

arctan x — arctan y = arctan ( ) for xy > —1.

Also solved by Michel Bataille (France), Gerald E. Bilodeau, Brian Bradie, Bruce S. Burdick, Prithwijit
De (India), Robert L. Doucette, Dmitry G. Fleischman, Isaac Garfinkle, Michael Goldenberg & Mark Kaplan,
Russell A. Gordon, Raymond N. Greenwell, GWstat Problem Solving Group, Lixing Han, Eugene A. Herman,
Tom Jager, Isaac E. Leonard (Canada), Weiping Li, James Magliano, Soumitra Mandal (Chandar Nagore, In-
dia), Soumitra Mandal (Kolkata, India), Rituraj Nandan, Northwestern University Math Problem Solving Group,
Moubinool Omarjee (France), Paolo Perfetti (Italy), Angel Plaza (Spain) Ravi Prakash (India), Shafiqur Rah-
man (Bangladesh), Don Redmond, Michael Reid, Edward Schmeichel, Sedn M. Stewart (Australia), John Tolle,
Robert W. Vallin, Michael Vowe (Switzerland), Edward T. White, John Zacharias, and the proposer. There was one
incomplete or incorrect solution.
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Counting lattice points in a tetrahedron February 2017

2013. Proposed by Julien Sorel, PNI, Piatra Neamt, Romania.

For a positive integer n, let 7 be the regular tetrahedron in R3 with vertices 0(0, 0, 0),
A(0, n, n), B(n, 0, n), and C(n, n, 0). Show that the number N of lattice points (x, y, z)
(i.e., points with integer coordinates x, y, z) lying inside or on the boundary of 7 is

1
N = E(n + D)+ 2n+3).

Solution by Marty Getz, University of Alaska Fairbanks, and Dixon Jones, Fairbanks,
AK.

The cube C = [0, n] x [0, n] x [0, n] contains (n + 1)* lattice points. Let O'(n, n, n),
A'(n,0,0), B'(0,n,0), C'(0, 0, n) be the vertices of C diagonally opposite to O, A, B,
C, respectively. The complement of 7 in C is the union of the four congruent solid
trirectangular tetrahedra O’ABC, OA’BC, OAB'C, OABC' each with one face (ABC, resp.
OBC, resp. OAC, resp. OAB) removed. Clearly, each of these four tetrahedra contains
n(n + 1)(n + 2)/6 lattice points (the nth tetrahedral number). It follows that 7 con-
tains

nn+ 1(n+2)

N:(n+1)3—4( .

) = %(n+ D(n* +2n+ 3)

lattice points.

Also solved by Pedro Acosta, Michel Bataille, Elton Bojaxhiu (Albania) & Enkel Hysnelaj (Australia), Robin
Chapman (UK), John Christopher, Con Amore Problem Group (Denmark), Timothy Crane, Robert L. Doucette,
Habib Y. Far, GW University Math Problems Group, GWstat Problem Solving Group, Eugene Herman, Lucyna
Kabza, Hidefumi Katsuura, Alejandro Mahillo (Spain), Peter McPolin (UK), Rituraj Nandan, Northwestern Uni-
versity Math Problem Solving Group, Zachery Peterson, Rob Pratt, Edward Schmeichel, Skidmore College Prob-
lem Group, Philip Straffin, and the proposer.

Anti-automorphisms of Z, February 2017

2014. Proposed by Gaitanas Konstantinos, Greece.

For every integer n > 2, let (Z,, +) be the additive group of integers modulo n. Define
an anti-morphism of Z, to be any function f : Z, — Z, such that f(x) — f(y) #x —y
whenever x, y are distinct elements of Z,,. Let an anti-automorphism of Z,, be any bijec-
tive anti-morphism of Z,. For what values of n does Z,, admit an anti-automorphism?

Solution by Isaac Garfinkel (student) and Rafe Jones, Carleton College, Northfield,
MN.

An anti-automorphism of Z, exists precisely for n odd. Clearly, f is an anti-morphism
precisely when g(x) := f(x) — x is an injective function from Z, to itself. If n is odd,
it is clear that f(x) = —x is an anti-automorphism of Z, since g(x) = f(x) —x = —2x
is an injective function on Z, (because 2 is invertible in Z, when n is odd) and f is
obviously bijective. Conversely, consider any anti-automorphism f on Z, for some
n > 2. Let g(x) := f(x) — x as above, so gis injective. Since f is a bijection from Z, to
itself, it is a permutation of Z,,. In any k-cycle (x1x; . . . x;) of the permutation f (where
X = f(x1), ooy X = fO—1), X1 = f(xx)), we have
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glx1) +glx) + ... + gla—1) + glxx)
=[fC) —x1] + [f2) —x2] + oo+ [FOr—1) — xe—1] + [f o) — xi]
= —x)+ 0 —x)+ ...+ O —x—1) + (x1 —x) =0.

(Note that this reasoning is still valid for a 1-cycle (x;) where f(x;) = x; since in this
case g(x1) = f(x;) — x; = 0.) Since Z, is a disjoint union of such cycles, it is clear that
erZn g(x) = 0. On the other hand, since g is an injective function from Z, to itself, it
is also a permutation of Z,, so we have

Yaw=Yx= "0

x€Zy x€Zy

Hence, n(n + 1)/2 must be the zero element of Z,, so (n + 1)/2 must be an integer;
thus, » must be odd.

Also solved by Paul Budney, Robin Chapman (UK), Joseph DiMuro, Robert L. Doucette, Dmitry Fleischmann,
George Washington University Jump Problems Team, Eugene A. Herman, Tom Jager, Daniel Lopez-Aguayo (Mex-
ico), Peter McPolin (UK), Michael Reid, Edward White, and the proposer.

Separable polynomials in a “reverse arithmetic” sequence February 2017
2015. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let K be any field. Let P(X) be any nonconstant polynomial in a single variable X hav-
ing coefficients in K. If K is a finite field, assume that deg P (the degree of P) is coprime
to the characteristic of K. Prove that there exists a polynomial Q(X) with coefficients
in K, and an integer m > deg Q, such that the polynomial R(X) = X"P(X) + Q(X) has
only simple zeros.

Solution by Michael Reid, University of Central Florida, Orlando, FL.

The statement “R(X) has simple zeros” will be interpreted in the strong sense that R(X)
is separable, i.e., it has no repeated roots in an algebraic closure K of K. There is no
loss of generality in supposing that P is monic, so we will do so. Let d = deg P and
write P(X) = X9 + f(X), with f(X) a polynomial with coefficients in K and degree at
mostd — 1.

Assume first that K is infinite. Given m > 1, let R(X) = X" P(X) — t. The discrim-
inant of R(X) is a polynomial D(¢) in the variable ¢ with (possibly zero) leading term
+(d + m)¥*+md+m=1_Choose m > 1 such that this leading term is nonzero, so D(t) is
a nonzero polynomial (if d + 1 is not a multiple of the characteristic of K, let m = 1;
otherwise, let m = 2). Since D has finitely many roots while K is infinite, there is ¢ € K
such that D(c) # 0, hence disc(X"P(X) — c¢) # 0 and the polynomial X"P(X) — c is
separable, so it suffices to take Q(X) = —c (constant) in this case.

Next, assume that K is finite of prime characteristic p and order equal to some
power g of p. Choose n = 1 or 2 so that d + n is coprime to p. Then, as above, D(t) =
disc(X"P(X) — t) is anonzero polynomial of degree degD = d + n — 1. Choose r > 1
suchthat? := 1+ ¢" > d + n. By elementary properties of finite fields, K has a degree-
¢ extension field L; moreover, L is Galois over K, and also primitive over K, i.e.,
L = K(«) for some « € L. In particular, the monic minimal polynomial g(X) for «
over K is separable and splits in L: g(X) = ]_[le(X — o) with arq, . . ., o distinct ele-
ments of L (the Galois conjugates of «, one of which is « itself). The polynomial g(X)
is of the form g(X) = X* + h(X) where degh < £ — 1 and h(X) has coefficients in K.
Fori=1,...,¢, the degree of ; over K is equal to £ > d 4+ n > deg D, so it follows
that o; is not a zero of the polynomial D(z); therefore, R;(X) := X"P(X) — «; is a poly-
nomial with coefficients in L and separable. Moreover, R;(X), ..., R¢(X) are pairwise
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relatively prime because their differences R;(X) — R;(X) = o; — «; are nonzero con-
stants for i # j. The polynomial R(X) := g(X"P(X)) clearly has coefficients in K and
factors as R(X) = ]_[le(X”P(X) —a;) = ]_[f=l Ri(X); hence, R(X) is also separable
being a product of pairwise coprime separable factors. We will show that R(X') has the
form required by the problem.

Since g is a power of p = char K = char L, the identity (A + B)? = A? + B? holds
for arbitrary polynomials A, B with coefficients in L, and we obtain

RX) = g(X"P(X)) = (X"P(X))" + h(X"P(X)) = X"P(X)'** + h(X"P(X))
= X"PX)PX)? + h(X"P(X)) = X" PX)(X? + f(X))? + h(X"P(X))
= X“"PX)(XYM + F(X)T) + h(X"P(X))
= X" PX) + X FOOT PX) + h(X"P(X))]
= X"P(X) + Q(X),

where we let m = €n+dq" and Q(X) = X" f(X)? P(X) + h(X"P(X)). On the one
hand, X“" f(X)? P(X) has degree at most £n + (d — 1)¢" +d = m — (¢" — d) < m; on
the other hand, 2(X"P(X)) has degree at most (¢ — 1)(d + n) = m — n < m; therefore,
deg O < m. Since P(X), f(X), and h(X) have coefficients in K so does Q(X ), complet-
ing the solution.

Editor’s Note. The solution above shows that the condition that deg P be coprime
to char K is not necessary. Professor Michael Reid remarks that, at least when K
is finite, one may add the requirement that R(X) be irreducible over K as follows.
An analog for irreducible polynomials over finite fields of Dirichlet’s Theorem on
primes in arithmetic progressions was proved by H. Kornblum, Uber die Primfunk-
tionen in einer arithmetischen Progression, Math. Zeitschrift 5 (1919) 100-111,
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN0023
64972. The reverse polynomial P(X) = X?P(1/X) of P has degree at most d and
nonzero constant term; therefore, P(X) is coprime to X d+1 g9 there is an irreducible
polynomial of the form R(X) = X9*1S(X) + P(X) with coefficients in K whose rever-
sal R(X) is also irreducible and has the required form; moreover, R(X) is necessarily
separable since every finite field K is perfect.

Also solved by Isaac Garfinkle and the proposer. There was 1 incomplete or incorrect solution.

Answers

Solutions to the Quickies from page 72.

A1077. We use congruences modulo 3 in the ring Z[X] of formal univariate polynomi-
als with integer coefficients. Explicitly, p(X) = 0 (mod 3) means that all coefficients
of p are multiples of 3; equivalently, that p(X) = 3¢(X) for some g € Z[X]. By the
binomial formula, we have

99

k=0

We evaluate (1 4+ X)* modulo 3 as follows. First, note that (A + B)> — (A® +
B3) = 3AB(A + B) = 0 (mod 3) holds forall A, B € Z[X], hence (A + 1]3)3 = IA3 +B?
(mod 3) (the “freshman dream”). By induction, we have (A + B)* = A* + B? for any


http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002364972
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integer [ > 0, hence

A+X)’ =0+X0+X)?=0+xXHa+ X2 =0 + X0 +2x° +x')
=142+ X8+ x¥ 42X + X  (mod 3).

Thus, (%) is not divisible by 3 exactly when k = 0, 9, 18, 81, 90, 99.

A1078. The answer is no. We prove that every convergent 2-sequence is eventu-
ally constant. Assume that (x,) converges to some real number r. For every posi-
tive integer n, choose «, such that |xg — r| < 1/n for 8 > «,. The countable union
I':=J, 2, is countable since each ©_,, is countable by assumption. Since £
is uncountable, it has an element y not in I'. For all n we obviously have y > o,
(since y ¢ I' D Q_,,), hence any B € Q such that f > y must satisfy B > «,, so
|xg — r| < 1/n holds. We conclude that |xg — r| = 0 for 8 > y, so (x,) is eventually
equal to the constant r.
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Inglis, Matthew, and Nina Attridge, Does Mathematical Study Develop Logical Thinking? Test-
ing the Theory of Formal Discipline, World Scientific, 2017; xvii + 185 pp, $102. ISBN 978-1-
78634-068-9.

Johnson, Peter, Does algebraic reasoning enhance reasoning in general? A response to Dudley.
Notices of the American Mathematical Society 59 (9) (October 2012): 1270-1271, http: //wuw.
ams.org/notices/201209/rtx120901270p. pdf.

Inglis and Attridge ask a question that is absolutely crucial to the place of mathematics
in education (apart from its usefulness and its cultural importance): Does mathemat-
ical study develop logical thinking? For millennia, the answer—from Plato to Locke
and onward, promoted by educators, presumed by parents, and more or less accepted
by students—has been yes. Of course, the same logic, based on the Theory of Formal
Discipline (TFD), was applied also to learning Latin and (by Benjamin Franklin) to
learning chess. Research by psychologists—of which mathematicians are almost com-
pletely ignorant—uniformly rejects TFD. The leading alternative explanation is the
“filtering hypothesis”: Better reasoners do better in mathematics (and then continue
on to take more mathematics). However, the authors argue (weakly) that studying “ad-
vanced” mathematics is “associated with development of reasoning skills,” particularly
“the ability to reject invalid inferences.” Psychologists are highly skeptical of transfer
of learning from one domain to another, as the article by Johnson notes particularly
in connection with algebra: “There appears to be no research whatsoever that would
indicate that the kind of reasoning skills a student is expected to gain from learning
algebra would transfer to other domains of thinking or to problem solving or critical
thinking in general.” That is absolutely damning for TFD as far as algebra goes, despite
Johnson’s hedge: “The lack of such research evidence does not mean that such transfer
does not occur or that algebraic reasoning might not have positive effects on problem
solving and critical thinking.” Curiously, there is null intersection of the references in
the book (whose authors are from the United Kingdom) with those in the article by
Johnson (in Connecticut). A key question: If studying mathematics (or Latin, for that
matter) does not help develop reasoning, what does?

Diaconis, Persi, and Brian Skyrms, Ten Great Ideas about Chance, Princeton University Press,
2017; xi + 246 pp, $27.95. ISBN 978-0-691-17416-7.

“This is a history book, a probability book, and a philosophy book.” It is also a ter-
rific book. The authors explain 10 great ideas in probability, starting from their his-
tory and pursuing their philosophical implications. They pithily summarize each idea
near the start of each chapter: chance can be measured; judgments can be measured in
terms of probabilities; the psychology of chance and the logic of probability are dif-
ferent subjects; the law of large numbers; probability through measure theory; Bayes’
theorem; exchangeability; randomness; physical chance; and induction. Appendices to
some chapters give more detail and depth. The authors assume that the reader has taken
an undergraduate course in probability or statistics; an appendix contains a tutorial on
basic ideas in probability.

Math. Mag. 91 (2018) 78-79. doi:10.1080/0025570X.2017.1411696 © Mathematical Association of America
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O’Shea, Owen, The Call of the Primes: Surprising Patterns, Peculiar Puzzles, and Other Mar-
vels of Mathematics, Prometheus Books, 2016; 330 pp, $19. ISBN 978-1-63388-148-8.
Today, thanks in part to growth in the mathematics profession, there is a vast cornu-
copia of popular works on mathematics, appealing to varying levels of mathematical
experience. Their proliferation and variety has increased interest, curiosity, and sup-
port for mathematics. Many such books come to my desk for potential review. Most
are inspiring for some readers and are worthy efforts; but there are too many for me
to distinguish carefully their strengths and draw your attention to the merits of each,
and they compete for attention here with other works. Particularly worthy of attention,
however, is O’Shea’s The Call of the Primes. As a nonmathematician, he approaches
mathematics from the point of view of recreation: “[E]njoyment breeds the desire to
explore and to seek out new challenges....” He concentrates on asking questions and
leading the reader to conjecture patterns; I learned something new in every chapter.

Stewart, lan, The Beauty of Number in Nature: Mathematical Patterns and Principles from the
Natural World, MIT Press, 2017; 224 pp, $24.95(P). ISBN 978-0-262-53428-4.

This book, an update and revision of What Shape Is a Snowflake? (2001), contains
astonishingly beautiful photos of mathematics in nature. It begins with the puzzle of
the shape of a snowflake, examines what a pattern is, catalogs various kinds of pat-
terns in different dimensions, considers fractal geometry and chaos, and finally returns
to snowflakes. “I do not believe that the beauty of a snowflake can be spoiled by an
awareness of what makes it.... What shape is a snowflake? Snowflake-shaped.”

Hayes, Brian, Foolproof and Other Mathematical Meditations, MIT Press, 2017; x + 234 pp,
$24.95. ISBN 978-0-262-03686-3.

These 13 excellent essays appeared in their original form in the “Computing Science”
column of American Scientist, between 1998 and 2014; the versions here are exten-
sively revised and updated (and some are retitled). Author Hayes wrote many other
exciting columns, so this collection is just a sample. The first essay examines the his-
tory of the legend of Gauss summing the first 100 integers. The last, “Foolproof,” begins
with “I was a [professional] teenage angle trisector”” and goes on to explore how proofs
compel belief. In between are the explorations of a nonmathematician who writes ex-
tremely well about his struggles and journeys to satisfy his curiosity about mathemat-
ical puzzles, concepts, and calculations.

Stillwell, John, Reverse Mathematics: Proofs from the Inside Out, Princeton University Press,
2018; vii + 182 pp, $29.95. ISBN 978-0-691-17717-5.

Proofs and Refutations (1977) by Imre Lakatos promoted the idea that mathematical
theorems begin from desired conclusions and reason back to sufficient conditions. John
Stillwell takes that premise further, to ask what axioms are needed to prove a theorem.
Proceeding beyond the parallel postulate and the axiom of choice, Stillwell identifies
three levels of axiom systems that (between them) prove most of the basic theorems
of analysis. In each case, the axioms can be proved from the theorem. The result is a
hierarchy of “deepness”: intermediate value theorem < Heine—Borel theorem and ex-
treme value theorem < Cauchy convergence criterion and Bolzano—Weierstrass theo-
rem. Readers will encounter gentle introductions to mathematical logic, computability,
definability, and E(l) sets.

Newton, Isaac, The Mathematical Principles of Natural Philosophy: reissue of 1st American
edition published in 1846, translated by Andrew Motte; KroneckerWallis, 2017; 688 pp, € 45.
“Books are something to touch and look at. Not just read.” That is the major principle
of the publisher of this collector’s edition of Newton’s Principia, with its emphasis
on design. Each of the three main chapters is bound separately as a fascicule. The
binding, page size (15 cm by 21 cm), typeface (The Serif), type size, amount of matter
on a page, and ink colors (“petrol blue and coral orange”) were all carefully chosen.
The result is indeed a beautiful commemoration of the 330th anniversary of publication
of Newton’s original work. The contrast between “petrol blue” and “coral orange” is
welcome, except that the “coral orange” is so light in thin type as to make paragraphs
and entire pages in it hard to read.
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